MODELLING AND DESIGN SMART CONTROLLER OF MAGNETO RHEOLOGICAL USING BOUC-WEN AND SIM MODEL FOR MOTORCYCLE SUSPENSION SYSTEM

2016 ◽  
Vol 78 (6-13) ◽  
Author(s):  
Mohamad Amiruddin Ismail ◽  
Pauziah Muhamad ◽  
Aminudin Abu

Suspension system is a type of structural equipment attached to the wheels of a vehicle for the purpose of reducing the effects of irregularities on road surfaces. This paper investigates the Magneto rheological (MR) suspension system in motorcycle and compares its advantages with the passive suspension system. Passive suspension element can only store and dissipate energy associated with local relative motion. Moreover its energy cannot be controlled as the suspension properties remain fixed at all time, unlike MR suspension which has the ability to overcome these drawbacks. The characteristic of the latter is related to micron-sized particles, typically iron, that forms particle chains, when appropriate electric field is applied. Two modelling approaches which are the Bouc-Wen model and Sim models, were used in this research. By comparing these two MR models and passive suspension system, it can be concluded that the Bouc-Wen model gives the best result. It is also shown that MR suspension systems reduce the displacement amplitude around 30% whereas the time settling is reduced from 10 to 3 seconds, compared to the passive suspension system.

Author(s):  
N.M. Ghazaly ◽  
A.S Ahmed ◽  
A.S Ali ◽  
G.T Abd El- Jaber

In recent years, the use of active control mechanisms in active suspension systems has attracted considerable attention. The main objective of this research is to develop a mathematical model of an active suspension system that is subjected to excitation from different road profiles and control it using H∞ technique for a quarter car model to improve the ride comfort and road handling. Comparison between passive and active suspension systems is performed using step, sinusoidal and random road profiles. The performance of the H∞ controller is compared with the passive suspension system. It is found that the car body acceleration, suspension deflection and tyre deflection using active suspension system with H∞ technique is better than the passive suspension system.


2021 ◽  
Vol 17 (4) ◽  
pp. 402-415
Author(s):  
A. H. Mohd Yamin ◽  
I. Z. Mat Darus ◽  
N.S. Mohd Nor ◽  
M. H. Ab Talib

This article introduces the application of the Cuckoo Search (CS) Algorithm to tune Proportional-Integral-Derivative (PID) and Skyhook controller for the semi-active (SA) suspension system further to improve the vehicle’s ride comfort and stability. Meanwhile, the PID-CSA and Skyhook-CSA intelligent approaches have been compared to the passive suspension system. The performances of the PID controller and Skyhook controller are optimised by Cuckoo Search (CS) Algorithm, respectively. The system’s mean square error (MSE) is defined as an objective function for optimising the proposed controllers. The performance of the proposed PID-CSA and Skyhook-CSA controllers are evaluated with the passive suspension system in the form of body acceleration, body displacement, and tire acceleration. The sinusoidal road profile is set as the disturbance of this system. The percentage improvement for body acceleration and body displacement achieved about 25% for the PID-CSA controller and 1-4% for Skyhook-CSA. These simulated results reflect that the proposed controllers outperformed in comparison with other considered methods to obtain the most effective vehicle stability and ride comfort.


Author(s):  
FLORIN ANDRONIC ◽  
IOAN MIHAI ◽  
IOAN-COZMIN MANOLACHE-RUSU ◽  
LILIANA PĂTULEANU ◽  
IVAN RADION

<p>Automobile suspension systems have an important role in a vehicle's functioning, especially with regard to driving safety. In the present paper we exhibit the equations that characterize a passive suspension system. Considering that solving the equations is extremely cumbersome we developed a simulation scheme in MATLAB Simulink. The simulation allows for an analysis of the behavior of the passive suspension system on any uneven track surface whose configuration is ensured by stimulus signals. For the simulation we used the quarter car model. The suspension was chosen as having two degrees of freedom. </p>


2015 ◽  
Vol 8 (3) ◽  
pp. 203
Author(s):  
Muhammad Sani Gaya ◽  
Amir Bature ◽  
Lukman A. Yusuf ◽  
I. S. Madugu ◽  
Ukashatu Abubakar ◽  
...  

Author(s):  
Xiaotian Xu ◽  
Yousef Sardahi ◽  
Chenyu Zheng

This paper presents a many-objective optimal design of a four-degree-of-freedom passive suspension system with an inerter device. In the optimization process, four objectives are considered: passenger’s head acceleration (HA), crest factor (CF), suspension deflection (SD), and tire deflection (TD). The former two objectives are important for the health and comfort of the driver and the latter two quantify the suspension system performance. The spring ks and damping cs constants between the sprung mass and unsprung mass, the inertance coefficient B, and the tire spring constant ky are considered as design parameters. The non-dominated sorting genetic algorithm (NSGA-II) is used to solve this optimization problem. The results show that there are many optimal trade-offs among the design objectives that could be applicable to suspension design in the industry.


2015 ◽  
Vol 1115 ◽  
pp. 440-445 ◽  
Author(s):  
Musa Mohammed Bello ◽  
Amir Akramin Shafie ◽  
Raisuddin Khan

The main purpose of vehicle suspension system is to isolate the vehicle main body from any road geometrical irregularity in order to improve the passengers ride comfort and to maintain good handling stability. The present work aim at designing a control system for an active suspension system to be applied in today’s automotive industries. The design implementation involves construction of a state space model for quarter car with two degree of freedom and a development of full state-feedback controller. The performance of the active suspension system was assessed by comparing it response with that of the passive suspension system. Simulation using Matlab/Simulink environment shows that, even at resonant frequency the active suspension system produces a good dynamic response and a better ride comfort when compared to the passive suspension system.


2008 ◽  
Vol 2 (2) ◽  
pp. 518-527 ◽  
Author(s):  
Hung Chi NGUYEN ◽  
Akira SONE ◽  
Daisuke IBA ◽  
Arata MASUDA

Author(s):  
Olugbenga M. Anubi ◽  
Carl D. Crane

A new variable stiffness suspension system based on a recent variable stiffness mechanism is proposed. The overall system is composed of the traditional passive suspension system augmented with a variable stiffness mechanism. The main idea is to improve suspension performance by varying stiffness in response to road disturbance. The system is analyzed using a quarter car model. The passive case shows much better performance in ride comfort over the tradition counterpart. Analysis of the invariant equation shows that the car body acceleration transfer function magnitude can be reduced at both the tire-hop and rattle space frequencies using the lever displacement transfer function thereby resulting in a better performance over the traditional passive suspension system. An H∞ controller is designed to correct for the performance degradation in the rattle space thereby providing the best trade-off between the ride comfort, suspension deflection and road holding.


Author(s):  
Amit Shukla ◽  
Jeong Hoi Koo

Nonlinear active suspension systems are very popular in the automotive applications. They include nonlinear stiffness and nonlinear damping elements. One of the types of damping element is a magneto-rheological fluid based damper which is receiving increased attention in the applications to the automotive suspension systems. Latest trends in suspension systems also include electronically controlled systems which provide advanced system performance and integration with various processes to improve vehicle ride comfort, handling and stability. A control bifurcation of a nonlinear system typically occurs when its linear approximation loses stabilizability. These control bifurcations are different from the classical bifurcation where qualitative stability of the equilibrium point changes. Any nonlinear control system can also exhibit control bifurcations. In this paper, control bifurcations of the nonlinear active suspension system, modeled as a two degree of freedom system, are analyzed. It is shown that the system looses stability via Hopf bifurcation. Parametric control bifurcation analysis is conducted and results presented to highlight the significance of the design of control system for nonlinear active suspension system. A framework for the design of feedback using the parametric analysis for the control bifurcations is proposed and illustrated for the nonlinear active suspension system.


Sign in / Sign up

Export Citation Format

Share Document