scholarly journals West African kenaf (Hibiscus Cannabinus L.) natural fiber composite for application in automotive industry

2018 ◽  
Vol 14 (4) ◽  
pp. 397-402 ◽  
Author(s):  
Tijjani Abdullahi ◽  
Zawati Harun ◽  
Mohd Hafiz Dzarfan Othman ◽  
Nasiru Aminu ◽  
Oguntunde Gabriel ◽  
...  

The study of the kenaf core fiber – polymer composites was done by preparing a kenaf/polymer composite using polypropylene (PP) polymer matrix and Scona TPPP 9012 GA as coupling agent with Nigerian grown Kenaf natural fiber through hot pressing. The objective was to characterize the stability and bond strength of the polymer/fiber interface through morphological analysis by using Scanning Electron Microscopy (SEM) as well as the characterization of thermal and mechanical properties of the composite. The result obtained shows an increment in tensile strength as a percentage of kenaf fiber increased to 30%, this trend continuous surprisingly, even at 50% kenaf fiber loading, which goes against the result obtained in previous literature. Thus, signifying the positive influence of Scona TPPP 9012 GA coupling agent. However, further analysis indicated that 40% kenaf fiber loading has a better chance to be considered suitable for use in the automotive structure.

Author(s):  
Willy Artha Wirawan

Biocomposite is an innovation of renewable material in engineering made from the bark fiber of waru (Hibiscus tiliaceus, the bark is environmentally friendly and has the potential to be developed. The purpose of this study is to modify biocomposite by adding methacryloxypropyltrimethoxysilane-coupling agent on waru bark fiber (Hibiscus tiliaceus) as an effort to improve tensile properties. Waru bast fibers, as reinforcement, were prepared by alkali procces using 6% NaOH solution for 120 minutes and then added 0.75% coupling agent and  ordered using continous fibers with 0°/0°, 0°/90° and 45°/45° orientation. After that, the Biocomposites  were formed with a polyester matrix using Vacuum Pressure Resin Infusion (VAPRI) method. The results of SEM tested showed the quality improvement of the bonds bringing significant impact on the tensile properties of the waru bark biocomposite. On the continous fiber 0°/90° orientated  showed that the highest strength was 401.368 MPa, while biocomposites with 45°/45° orientation has lowest tensile strength of 65.243 MPa


2020 ◽  
Vol 305 ◽  
pp. 8-17
Author(s):  
Felix Wong Wei Zie ◽  
Sujan Debnath ◽  
Mahmood Anwar ◽  
Abdul Hamid Abdullah

Surface treatment is one of the method used to enhance the mechanical performance of natural fiber composite by improving the compatibility of fiber and matrix. Nevertheless, no proof can be shown on which surface treatment is the absolute solution in improving the mechanical properties of natural fiber composite. Different surface treatments might have needed for different kinds of natural fiber composites. In this research work, water, alkaline, permanganate, bleaching and acetylation treatment on bagasse fiber are evaluated and the effect of soaking temperature as well as the effect of fiber loading are investigated. The mechanical performance of bagasse fiber-epoxy composite was studied by carrying out three-point bending test and optical microscopy test. Among 0w/w% and 5w/w% fiber loading, composite with 1w/w% and 2w/w% fiber loading possessed the highest flexural strength and modulus respectively. However, poor wettability between fiber and matrix was observed at higher fiber loading. Water, bleaching, permanganate and acetylation treatment have minor positive effect on the mechanical performance of the composite, yet a great increment in flexural properties of alkali treated fiber composite was noticed such that 21.48% and 23.95% of improvement was made on flexural strength and flexural modulus respectively. Optical microscopy test indicated that alkali treatment is responsible for roughening the fiber surface, and improving the fiber wettability and dispersion. Depend on the surface treatment, effect of soaking temperature may vary. In some treatments, hotter soaking temperature led to faster rate of reaction, which resulted in greater surface roughening and greater cleansing effect. Despite of that, over reaction can be happened in some cases, which will result in lower flexural properties due to over damaged fiber. Hence, it was concluded that the alkaline treatment at room temperature could be the most effective surface treatment to enhance the mechanical performance of bagasse fiber-epoxy composite.


1997 ◽  
Vol 28 (3) ◽  
pp. 331-343 ◽  
Author(s):  
P. Herrera-Franco ◽  
A. Valadez-Gonzalez ◽  
M. Cervantes-Uc

2015 ◽  
Vol 766-767 ◽  
pp. 85-89 ◽  
Author(s):  
V.M. Manickavasagam ◽  
B. Vijaya Ramnath ◽  
C. Elanchezhian ◽  
R. Sundarrajan ◽  
S. Vickneshwaran ◽  
...  

Advancement in Science and technology over the past decade has made the human society to venture into using hybrid materials for variety of applications. Natural fiber composite materials are one among those new emerging engineering materials. These materials are finding increased usage due to their low cost and eco-friendly nature. This paper deals with the fabrication and characterization of abaca, flax based hybrid composite. The properties of hybrid composites are compared to the composite containing any one of the constitutional fibers of hybrid composite. The characterisation is based on behaviour of composite under various mechanical testing. The tests include double shear strength and Hardness. The inner filament brakeage and crack propagation are studied using Scanning Electron Microscope (SEM).


2021 ◽  
Vol 881 ◽  
pp. 107-116
Author(s):  
Anteneh Geremew ◽  
Pieter De Winne ◽  
Tamene Adugna ◽  
Hans de Backer

Currently, researchers are more focusing on eco-friendly materials, sustainability, and low consumption of energy during the stage of handling, low initial cost, have appropriate mechanical properties and biodegradable and less susceptible to health hazards are the main challenge facing in the present day across the world especially to developing new materials that would improve the industrial supplies for making lightweight materials. Therefore; natural cellulosic fiber one, of effective strategies to substitute artificial fibers for its own benefits when compared and mainly concentrating to reinforce polymer matrices by natural cellulosic fiber due to their decomposable characteristic in nature. This an overview mainly discussed on commonly available natural fiber property such as physical property, chemical composition analysis, surface morphology analysis such as thermal stability analysis (TGA), Fourier Transform Infrared (FTIR) analysis and Scanning Electron Microscopy (SEM) to be adopted in order to characterized natural fiber and impact of treating natural fibers by appropriate chemical on certain properties was discussed by supporting literature. In addition to this the significance of characterization of natural fiber briefly discussed and this an overview will helps other researcher’s source for natural fiber composite studies in future studies.


2016 ◽  
Vol 89 ◽  
pp. 273-285 ◽  
Author(s):  
Kossi Fabrice Sodoke ◽  
Luc Laperrière ◽  
Lotfi Toubal ◽  
Reza Soufian Khakestar

Sign in / Sign up

Export Citation Format

Share Document