scholarly journals Maternal undernutrition in late gestation increases IGF2 signalling molecules and collagen deposition in the right ventricle of the fetal sheep heart

2018 ◽  
Vol 596 (12) ◽  
pp. 2345-2358 ◽  
Author(s):  
Jack R. T. Darby ◽  
I. Caroline McMillen ◽  
Janna L. Morrison
2013 ◽  
Vol 4 (6) ◽  
pp. 470-478 ◽  
Author(s):  
J. A. Thompson ◽  
K. Piorkowska ◽  
R. Gagnon ◽  
B. S. Richardson ◽  
T. R. H. Regnault

This study determined the effect of chronic intrauterine hypoxia on collagen deposition in the fetal sheep heart. Moderate or severe hypoxia was induced by placental embolization in chronically catheterized fetal sheep for 15 days starting at gestational day 116 ± 2 (term ∼147 days). The fetal right and left ventricle were evaluated for collagen content using a Sirius red dye and for changes in signaling components of pathways involved in collagen synthesis and remodeling using quantitative polymerase chain reaction and Western blot. In severely hypoxic fetuses (n = 6), there was a two-fold increase (P < 0.05) in the percentage staining for collagen in the right ventricle, compared with control (n = 6), whereas collagen content was not altered in the moderate group (n = 4). Procollagen I and III mRNA levels were increased in the right ventricle, two-fold (P < 0.05) and three-fold (P < 0.05), respectively, in the severe group relative to control. These changes were paralleled by a two-fold increase (P < 0.05) in mRNA levels of the pro-fibrotic cytokine, transforming growth factor β (TGF-β1), in the right ventricle. In the right ventricle, the mRNA levels of matrix metalloproteinase 2 (MMP-2) and its activator, membrane-type MMP (MTI-MMP) were increased five-fold (P = 0.06) and three-fold (P < 0.05), respectively, relative to control. Protein levels of TGF-β were increased in the left ventricle (P < 0.05). Thus, up-regulated collagen synthesis leading to increased collagen content occurs in the chronically hypoxic fetal heart and may contribute to the right ventricular diastolic and systolic dysfunction reported in human intrauterine growth restriction fetuses.


2013 ◽  
Vol 4 (5) ◽  
pp. 391-401 ◽  
Author(s):  
S. Zhang ◽  
O. Williams-Wyss ◽  
S. M. MacLaughlin ◽  
S. K. Walker ◽  
D. O. Kleemann ◽  
...  

Exposure to maternal undernutrition during the periconceptional period results in an earlier prepartum activation of the fetal hypothalamo–pituitary–adrenal (HPA) axis and altered stress responsiveness in the offspring. It is not known whether such changes are a consequence of exposure of the oocyte and/or the early embryo to maternal undernutrition in the periconceptional period. We have compared the effects of ‘periconceptional’ undernutrition (PCUN: maternal undernutrition imposed from at least 45 days before until 6 days after conception), and ‘early preimplantation’ undernutrition (PIUN: maternal undernutrition imposed for only 6 days after conception) on the expression of genes in the fetal anterior pituitary that regulate adrenal growth and steroidogenesis, proopiomelanorcortin (POMC), prohormone convertase 1 (PC1), 11β-hydroxysteroid dehydrogenase type 1 and 2 (11βHSD1 and 2) and the glucocorticoid receptor (GR) in fetal sheep at 136–138 days of gestation. Pituitary GR mRNA expression was significantly lower in the PCUN and PIUN groups in both singletons and twins compared with controls, although this suppression of GR expression was not associated with hypermethylation of the exon 17 region of the GR gene. In twin fetuses, the pituitary 11βHSD1 mRNA expression was significantly higher in the PIUN group compared with the PCUN but not the control group. Thus, exposure of the single or twin embryo to maternal undernutrition for only 1 week after conception is sufficient to cause a suppression of the pituitary GR expression in late gestation. These changes may contribute to the increased stress responsiveness of the HPA axis in the offspring after exposure to poor nutrition during the periconceptional period.


Endocrinology ◽  
2012 ◽  
Vol 153 (8) ◽  
pp. 4008-4018 ◽  
Author(s):  
Abigail L. Fowden ◽  
Alison J. Forhead

Insulin deficiency affects the adult metabolic response to undernutrition, but its effects on the fetal response to maternal undernutrition remain unknown. This study examined the effects of maternal fasting for 48 h in late gestation on the metabolism of fetal sheep made insulin deficient by pancreatectomy (PX). The endocrine and metabolic responses to maternal fasting differed between intact, sham-operated and PX fetuses, despite a similar degree of hypoglycemia. Compared with intact fetuses, there was no increase in the plasma concentrations of cortisol or norepinephrine in PX fetuses during maternal fasting. In contrast, there was a significant fasting-induced rise in plasma epinephrine concentrations in PX but not intact fetuses. Umbilical glucose uptake decreased to a similar extent in both groups of fasted animals but was associated with a significant fall in glucose carbon oxidation only in intact fetuses. Pancreatectomized but not intact fetuses lowered their oxygen consumption rate by 15–20% during maternal fasting in association with increased uteroplacental oxygen consumption. Distribution of uterine oxygen uptake between the uteroplacental and fetal tissues therefore differed with fasting only in PX fetuses. Both groups of fetuses produced glucose endogenously after maternal fasting for 48 h, which prevented any significant fall in the rate of fetal glucose utilization. In intact but not PX fetuses, fasting-induced glucogenesis was accompanied by a lower hepatic glycogen content. Chronic insulin deficiency in fetal sheep therefore leads to changes in the counterregulatory endocrine response to hypoglycemia and an altered metabolic strategy in dealing with nutrient restriction in utero.


2002 ◽  
Vol 174 (1) ◽  
pp. 27-36 ◽  
Author(s):  
EC Jensen ◽  
BW Gallaher ◽  
BH Breier ◽  
JE Harding

Exposure of the fetus to excess maternal glucocorticoids has been postulated to alter fetal growth and development, and thus provide a possible mechanism for the link between impaired fetal growth and altered postnatal physiology. However, the effects of exposure to excess maternal glucocorticoids on fetal physiology and metabolism in utero have not been described. We therefore studied the effects of chronic maternal cortisol infusion on fetal growth, blood pressure, metabolism and endocrine status in chronically catheterised fetal sheep. We infused hydrocortisone (80 mg/day, n=6) or saline (n=8) for 10 days into the pregnant ewes beginning at 119 days of gestation. Maternal cortisol infusion reduced fetal growth rate by 30% (girth increment 2.9+/-0.3 vs 1.8+/-0.4 mm/day, P=0.03). Maternal cortisol infusion increased fetal heart weight by 15% relative to body weight and increased ventricular wall thickness by 30% in the left and 50% in the right ventricle. The weight of the spleen was reduced by 30% and placental weight reduced by 25%. Fetal blood pressure increased by approximately 10 mmHg (20%) during maternal cortisol infusion. Maternal cortisol infusion did not alter amino-nitrogen concentrations. However, maternal lactate concentrations increased by 80% and fetal lactate concentrations increased by 74% with maternal cortisol infusion, and both maternal and fetal urea concentrations increased by 40%. Circulating maternal IGF-binding protein (IGFBP)-3 levels had increased by 20% by the end of the maternal cortisol infusion. Fetal IGF-I concentrations decreased during cortisol infusion and fetal IGFBP-1 concentrations were negatively correlated with fetal weight (r=-0.76, P=0.02). We conclude that even a modest elevation of maternal cortisol levels affects fetal growth, cardiovascular function, metabolism and endocrine status which may have long-term consequences.


2008 ◽  
Vol 586 (9) ◽  
pp. 2371-2379 ◽  
Author(s):  
Paula M. Costello ◽  
Anthea Rowlerson ◽  
Nur Aida Astaman ◽  
Fred Erick W. Anthony ◽  
Avan Aihie Sayer ◽  
...  

2005 ◽  
Vol 288 (1) ◽  
pp. R39-R45 ◽  
Author(s):  
L. J. Edwards ◽  
J. R. McFarlane ◽  
K. G. Kauter ◽  
I. C. McMillen

It has been proposed that maternal nutrient restriction may alter the functional development of the adipocyte and the synthesis and secretion of the adipocyte-derived hormone, leptin, before birth. We have investigated the effects of restricted periconceptional undernutrition and/or restricted gestational nutrition on fetal plasma leptin concentrations and fetal adiposity in late gestation. There was no effect of either restricted periconceptional or gestational nutrition on maternal or fetal plasma leptin concentrations in singleton or twin pregnancies during late gestation. In ewes carrying twins, but not singletons, maternal plasma leptin concentrations in late gestation were directly related to the change in ewe weight that occurred during the 60 days before mating [maternal leptin = 0.9 (change in ewe weight) + 7.8; r = 0.6, P < 0.05]. In twin, but not singleton, pregnancies, there was also a significant relationship between maternal and fetal leptin concentrations (maternal leptin = 0.5 fetal leptin + 4.2, r = 0.63, P < 0.005). The relative mass of perirenal fat was also significantly increased in twin fetal sheep in the control-restricted group (6.0 ± 0.5) compared with the other nutritional groups (control-control: 4.1 ± 0.4; restricted-restricted: 4.4 ± 0.4; restricted-control: 4.3 ± 0.3). In conclusion, the impact of maternal undernutrition on maternal plasma leptin concentrations during late gestation is dependent on fetal number. Furthermore, we have found that there is an increased fetal adiposity in the twins of ewes that experienced restricted nutrition throughout gestation, and this may be important in the programming of postnatal adiposity.


Sign in / Sign up

Export Citation Format

Share Document