scholarly journals Reduced activity of GIRK1‐containing heterotetramers is sufficient to affect neuronal functions, including synaptic plasticity and spatial learning and memory

2020 ◽  
Author(s):  
Alice Mett ◽  
Izhar Karbat ◽  
Michael Tsoory ◽  
Shachar Fine ◽  
Shachar Iwanir ◽  
...  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Zhao-Hui Yao ◽  
Xiao-li Yao ◽  
Shao-feng Zhang ◽  
Ji-chang Hu ◽  
Yong Zhang

Chronic cerebral hypoperfusion (CCH) is a common pathophysiological mechanism that underlies cognitive decline and degenerative processes in dementia and other neurodegenerative diseases. Low cerebral blood flow (CBF) during CCH leads to disturbances in the homeostasis of hemodynamics and energy metabolism, which in turn results in oxidative stress, astroglia overactivation, and synaptic protein downregulation. These events contribute to synaptic plasticity and cognitive dysfunction after CCH. Tripchlorolide (TRC) is an herbal compound with potent neuroprotective effects. The potential of TRC to improve CCH-induced cognitive impairment has not yet been determined. In the current study, we employed behavioral techniques, electrophysiology, Western blotting, immunofluorescence, and Golgi staining to investigate the effect of TRC on spatial learning and memory impairment and on synaptic plasticity changes in rats after CCH. Our findings showed that TRC could rescue CCH-induced spatial learning and memory dysfunction and improve long-term potentiation (LTP) disorders. We also found that TRC could prevent CCH-induced reductions in N-methyl-D-aspartic acid receptor 2B, synapsin I, and postsynaptic density protein 95 levels. Moreover, TRC upregulated cAMP-response element binding protein, which is an important transcription factor for synaptic proteins. TRC also prevented the reduction in dendritic spine density that is caused by CCH. However, sham rats treated with TRC did not show any improvement in cognition. Because CCH causes disturbances in brain energy homeostasis, TRC therapy may resolve this instability by correcting a variety of cognitive-related signaling pathways. However, for the normal brain, TRC treatment led to neither disturbance nor improvement in neural plasticity. Additionally, this treatment neither impaired nor further improved cognition. In conclusion, we found that TRC can improve spatial learning and memory, enhance synaptic plasticity, upregulate the expression of some synaptic proteins, and increase the density of dendritic spines. Our findings suggest that TRC may be beneficial in the treatment of cognitive impairment induced by CCH.


Neurosignals ◽  
2011 ◽  
Vol 20 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Francisco J. Monje ◽  
Eun-Jung Kim ◽  
Daniela D. Pollak ◽  
Maureen Cabatic ◽  
Lin Li ◽  
...  

2022 ◽  
Vol 12 (1) ◽  
pp. 96
Author(s):  
Guangyan Xu ◽  
Tianjia Li ◽  
Yuguang Huang

Intraoperative hypothermia is a common complication during operations and is associated with several adverse events. Postoperative cognitive dysfunction (POCD) and its adverse consequences have drawn increasing attention in recent years. There are currently no relevant studies investigating the correlation between intraoperative hypothermia and POCD. The aim of this study was to assess the effects of intraoperative hypothermia on postoperative cognitive function in rats undergoing exploratory laparotomies and to investigate the possible related mechanisms. We used the Y-maze and Morris Water Maze (MWM) tests to assess the rats’ postoperative spatial working memory, spatial learning, and memory. The morphological changes in hippocampal neurons were examined by haematoxylin-eosin (HE) staining and hippocampal synaptic plasticity-related protein expression. Activity-regulated cytoskeletal-associated protein (Arc), cyclic adenosine monophosphate-response element-binding protein (CREB), S133-phosphorylated CREB (p-CREB [S133]), α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor 1 (AMPAR1), and S831-phosphorylated AMPAR1 (p-AMPAR1 [S831]) were evaluated by Western blotting. Our results suggest a correlation between intraoperative hypothermia and POCD in rats and that intraoperative hypothermia may lead to POCD regarding impairments in spatial working memory, spatial learning, and memory. POCD induced by intraoperative hypothermia might be due to hippocampal neurons damage and decreased expression of synaptic plasticity-related proteins Arc, p-CREB (S133), and p-AMPAR1 (S831).


Microbiome ◽  
2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Alfonsina D’Amato ◽  
Lorenzo Di Cesare Mannelli ◽  
Elena Lucarini ◽  
Angela L. Man ◽  
Gwenaelle Le Gall ◽  
...  

Abstract Background The gut-brain axis and the intestinal microbiota are emerging as key players in health and disease. Shifts in intestinal microbiota composition affect a variety of systems; however, evidence of their direct impact on cognitive functions is still lacking. We tested whether faecal microbiota transplant (FMT) from aged donor mice into young adult recipients altered the hippocampus, an area of the central nervous system (CNS) known to be affected by the ageing process and related functions. Results Young adult mice were transplanted with the microbiota from either aged or age-matched donor mice. Following transplantation, characterization of the microbiotas and metabolomics profiles along with a battery of cognitive and behavioural tests were performed. Label-free quantitative proteomics was employed to monitor protein expression in the hippocampus of the recipients. We report that FMT from aged donors led to impaired spatial learning and memory in young adult recipients, whereas anxiety, explorative behaviour and locomotor activity remained unaffected. This was paralleled by altered expression of proteins involved in synaptic plasticity and neurotransmission in the hippocampus. Also, a strong reduction of bacteria associated with short-chain fatty acids (SCFAs) production (Lachnospiraceae, Faecalibaculum, and Ruminococcaceae) and disorders of the CNS (Prevotellaceae and Ruminococcaceae) was observed. Finally, the detrimental effect of FMT from aged donors on the CNS was confirmed by the observation that microglia cells of the hippocampus fimbria, acquired an ageing-like phenotype; on the contrary, gut permeability and levels of systemic and local (hippocampus) cytokines were not affected. Conclusion These results demonstrate that age-associated shifts of the microbiota have an impact on protein expression and key functions of the CNS. Furthermore, these results highlight the paramount importance of the gut-brain axis in ageing and provide a strong rationale to devise therapies aiming to restore a young-like microbiota to improve cognitive functions and the declining quality of life in the elderly.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Dongmei Qi ◽  
Yongfa Qiao ◽  
Xin Zhang ◽  
Huijuan Yu ◽  
Bin Cheng ◽  
...  

Previous studies demonstrated that Alzheimer’s disease was considered as the consequence produced by deficiency of Kidney essence. However, the mechanism underlying the symptoms also remains elusive. Here we report that spatial learning and memory, escape, and swimming capacities were damaged significantly in Kidney-yang deficiency rats. Indeed, both hippocampal Aβ40and 42 increases in Kidney-yang deficiency contribute to the learning and memory impairments. Specifically, damage of synaptic plasticity is involved in the learning and memory impairment of Kidney-yang deficiency rats. We determined that the learning and memory damage in Kidney-yang deficiency due to synaptic plasticity impairment and increases of Aβ40and 42 was not caused via NMDA receptor internalization induced by Aβincrease.β-Adrenergic receptor agonist can rescue the impaired long-term potential (LTP) in Kidney-yang rats. Taken together, our results suggest that spatial learning and memory inhibited in Kidney-yang deficiency might be induced by Aβincrease and the decrease ofβ2receptor function in glia.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Shi-Yu Sun ◽  
Xue-Yan Li ◽  
He-Hua Ge ◽  
Yu-Xin Zhang ◽  
Zhe-Zhe Zhang ◽  
...  

Increasing evidence indicates that exposure to inflammation during pregnancy intensifies the offspring’s cognitive impairment during aging, which might be correlated with changes in some synaptic plasticity-related proteins. In addition, an enriched environment (EE) can significantly exert a beneficial impact on cognition and synaptic plasticity. However, it is unclear whether gestational inflammation combined with postnatal EE affects the changes in cognition and synaptic plasticity-related proteins during aging. In this study, pregnant mice were intraperitoneally injected with lipopolysaccharides (LPS, 50 μg/kg) or normal saline at days 15–17 of pregnancy. At 21 days after delivery, some LPS-treated mice were randomly selected for EE treatment. At the age of 6 and 18 months, Morris water maze (MWM) and western blotting were, respectively, used to evaluate or measure the ability of spatial learning and memory and the levels of postsynaptic plasticity-related proteins in the hippocampus, including postsynaptic density protein 95 (PSD-95), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) GluA1 subunit, and Homer-1b/c. The results showed that 18-month-old control mice had worse spatial learning and memory and lower levels of these synaptic plasticity-related proteins (PSD-95, GluA1, and Homer-1b/c) than the 6-month-old controls. Gestational LPS exposure exacerbated these age-related changes of cognition and synaptic proteins, but EE could alleviate the treatment effect of LPS. In addition, the performance during learning and memory periods in the MWM correlated with the hippocampal levels of PSD-95, GluA1, and Homer-1b/c. Our results suggested that gestational inflammation accelerated age-related cognitive impairment and the decline of PSD-95, GluA1, and Homer-1b/c protein expression, and postpartum EE could alleviate these changes.


Sign in / Sign up

Export Citation Format

Share Document