scholarly journals Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis

2013 ◽  
Vol 591 (9) ◽  
pp. 2319-2331 ◽  
Author(s):  
José L. Areta ◽  
Louise M. Burke ◽  
Megan L. Ross ◽  
Donny M. Camera ◽  
Daniel W. D. West ◽  
...  
2012 ◽  
Vol 112 (11) ◽  
pp. 1805-1813 ◽  
Author(s):  
Daniel W. D. West ◽  
Nicholas A. Burd ◽  
Tyler A. Churchward-Venne ◽  
Donny M. Camera ◽  
Cameron J. Mitchell ◽  
...  

We made sex-based comparisons of rates of myofibrillar protein synthesis (MPS) and anabolic signaling after a single bout of high-intensity resistance exercise. Eight men (20 ± 10 yr, BMI = 24.3 ± 2.4) and eight women (22 ± 1.8 yr, BMI = 23.0 ± 1.9) underwent primed constant infusions of l-[ ring-13C6]phenylalanine on consecutive days with serial muscle biopsies. Biopsies were taken from the vastus lateralis at rest and 1, 3, 5, 24, 26, and 28 h after exercise. Twenty-five grams of whey protein was ingested immediately and 26 h after exercise. We also measured exercise-induced serum testosterone because it is purported to contribute to increases in myofibrillar protein synthesis (MPS) postexercise and its absence has been hypothesized to attenuate adaptative responses to resistance exercise in women. The exercise-induced area under the testosterone curve was 45-fold greater in men than women in the early (1 h) recovery period following exercise ( P < 0.001). MPS was elevated similarly in men and women (2.3- and 2.7-fold, respectively) 1–5 h postexercise and after protein ingestion following 24 h recovery. Phosphorylation of mTORSer2448 was elevated to a greater extent in men than women acutely after exercise ( P = 0.003), whereas increased phosphorylation of p70S6K1Thr389 was not different between sexes. Androgen receptor content was greater in men (main effect for sex, P = 0.049). Atrogin-1 mRNA abundance was decreased after 5 h recovery in both men and women ( P < 0.001), and MuRF-1 expression was elevated in men after protein ingestion following 24 h recovery ( P = 0.003). These results demonstrate minor sex-based differences in signaling responses and no difference in the MPS response to resistance exercise in the fed state. Interestingly, our data demonstrate that exercise-induced increases in MPS are dissociated from postexercise testosteronemia and that stimulation of MPS occurs effectively with low systemic testosterone concentrations in women.


2018 ◽  
Vol 314 (5) ◽  
pp. E457-E467 ◽  
Author(s):  
Jorn Trommelen ◽  
Imre W. K. Kouw ◽  
Andrew M. Holwerda ◽  
Tim Snijders ◽  
Shona L. Halson ◽  
...  

The purpose of this study was to determine the impact of ingesting 30 g casein protein with and without 2 g free leucine before sleep on myofibrillar protein synthesis rates during postexercise overnight recovery. Thirty-six healthy young men performed a single bout of resistance-type exercise in the evening (1945) after a full day of dietary standardization. Thirty minutes before sleep (2330), subjects ingested 30 g intrinsically l-[1-13C]phenylalanine-labeled protein with (PRO+leu, n = 12) or without (PRO, n = 12) 2 g free leucine, or a noncaloric placebo (PLA, n = 12). Continuous intravenous l-[ ring-2H5]phenylalanine, l-[1-13C]leucine, and l-[ ring-2H2]tyrosine infusions were applied. Blood and muscle tissue samples were collected to assess whole body protein net balance, myofibrillar protein synthesis rates, and overnight incorporation of dietary protein-derived amino acids into myofibrillar protein. Protein ingestion before sleep improved overnight whole body protein net balance ( P < 0.001). Myofibrillar protein synthesis rates did not differ significantly between treatments as assessed by l-[ ring-2H5]phenylalanine (0.057 ± 0.002, 0.055 ± 0.002, and 0.055 ± 0.004%/h for PLA, PRO, and PRO+leu, respectively; means ± SE; P = 0.850) or l-[1-13C]leucine (0.080 ± 0.004, 0.073 ± 0.004, and 0.083 ± 0.006%/h, respectively; P = 0.328). Myofibrillar l-[1-13C]phenylalanine enrichments increased following protein ingestion but did not differ between the PRO and PRO+leu treatments. In conclusion, protein ingestion before sleep improves whole body protein net balance and provides amino acids that are incorporated into myofibrillar protein during sleep. However, the ingestion of 30 g casein protein with or without additional free leucine before sleep does not increase muscle protein synthesis rates during postexercise overnight recovery.


2018 ◽  
Vol 596 (21) ◽  
pp. 5119-5133 ◽  
Author(s):  
Joseph W. Beals ◽  
Sarah K. Skinner ◽  
Colleen F. McKenna ◽  
Elizabeth G. Poozhikunnel ◽  
Samee A. Farooqi ◽  
...  

2012 ◽  
Vol 9 (1) ◽  
pp. 57 ◽  
Author(s):  
Yifan Yang ◽  
Tyler A Churchward-Venne ◽  
Nicholas A Burd ◽  
Leigh Breen ◽  
Mark A Tarnopolsky ◽  
...  

2017 ◽  
Vol 28 (1) ◽  
pp. 116-125 ◽  
Author(s):  
A. Pérez-López ◽  
J. McKendry ◽  
M. Martin-Rincon ◽  
D. Morales-Alamo ◽  
B. Pérez-Köhler ◽  
...  

2019 ◽  
Vol 149 (9) ◽  
pp. 1533-1542 ◽  
Author(s):  
Imre W K Kouw ◽  
Jan Willem van Dijk ◽  
Astrid M H Horstman ◽  
Irene Fleur Kramer ◽  
Joy P B Goessens ◽  
...  

ABSTRACT Background Excess lipid availability has been associated with the development of anabolic resistance. As such, obesity may be accompanied by impairments in muscle protein metabolism. Objective We hypothesized that basal and postprandial muscle protein synthesis rates are lower in obese than in lean men. Methods Twelve obese men [mean ± SEM age: 48 ± 2 y; BMI (in kg/m2): 37.0 ± 1.5; body fat: 32 ± 2%] and 12 age-matched lean controls (age: 43 ± 3 y; BMI: 23.4 ± 0.4; body fat: 21 ± 1%) received primed continuous L-[ring-2H5]-phenylalanine and L-[ring-3,5-2H2]-tyrosine infusions and ingested 25 g intrinsically L-[1-13C]-phenylalanine labeled whey protein. Repeated blood and muscle samples were obtained to assess protein digestion and amino acid absorption kinetics, and basal and postprandial myofibrillar protein synthesis rates. Results Exogenous phenylalanine appearance rates increased after protein ingestion in both groups (P < 0.001), with a total of 53 ± 1% and 53 ± 2% of dietary protein–derived phenylalanine appearing in the circulation over the 5-h postprandial period in lean and obese men, respectively (P = 0.82). After protein ingestion, whole-body protein synthesis and oxidation rates increased to a greater extent in lean men than in the obese (P-interaction < 0.05), resulting in a higher whole-body protein net balance in the lean than in the obese (7.1 ± 0.2 and 4.6 ± 0.4 µmol phenylalanine · h−1 · kg−1, respectively; P-interaction < 0.001). Myofibrillar protein synthesis rates increased from 0.030 ± 0.002 and 0.028 ± 0.003%/h in the postabsorptive period to 0.034 ± 0.002 and 0.035 ± 0.003%.h−1 in the 5-h postprandial period (P = 0.03) in lean and obese men, respectively, with no differences between groups (P-interaction = 0.58). Conclusions Basal, postabsorptive myofibrillar protein synthesis rates do not differ between lean and obese middle-aged men. Postprandial protein handling, including protein digestion and amino acid absorption, and the postprandial muscle protein synthetic response after the ingestion of 25 g whey protein are not impaired in obese men. This trial was registered at www.trialregister.nl as NTR4060.


2012 ◽  
Vol 108 (6) ◽  
pp. 958-962 ◽  
Author(s):  
Nicholas A. Burd ◽  
Yifan Yang ◽  
Daniel R. Moore ◽  
Jason E. Tang ◽  
Mark A. Tarnopolsky ◽  
...  

We aimed to determine the effect of consuming pure isolated micellar casein or pure whey protein isolate on rates of myofibrillar protein synthesis (MPS) at rest and after resistance exercise in elderly men. Healthy elderly men (72 (sem 1) years; BMI 26·4 (sem 0·7) kg/m2) were divided into two groups (n 7 each) who received a primed, constant infusion of l-[ring-13C6]phenylalanine to measure MPS at rest and during 4 h of exercise recovery. Participants performed unilateral leg resistance exercise followed by the consumption of isonitrogenous quantities (20 g) of casein or whey. Blood essential amino acids and leucine concentration peaked 60 min post-drink and were greater in amplitude after whey protein ingestion (both, P < 0·05). MPS in the rested leg was 65 % higher (P = 0·002) after ingestion of whey (0·040 (sem 0·003) %/h) when compared with micellar casein (0·024 (sem 0·002) %/h). Similarly, resistance exercise-stimulated rates of MPS were greater (P < 0·001) after whey ingestion (0·059 (sem 0·005) %/h) v. micellar casein (0·035 (sem 0·002) %/h). We conclude that ingestion of isolated whey protein supports greater rates of MPS than micellar casein both at rest and after resistance exercise in healthy elderly men. This result is probably related to a greater hyperaminoacidaemia or leucinaemia with whey ingestion.


Sign in / Sign up

Export Citation Format

Share Document