scholarly journals Could Eremotherium laurillardi (Lund, 1842) (Megatheriidae, Xenarthra) be an Omnivore Species?

Author(s):  
Mário André Trindade Dantas ◽  
Érica Cavalcante Omena ◽  
Jorge Luiz Lopes da Silva ◽  
Alcides Sial

We present carbon (δ13Ccollagen = -10.1 ‰) and nitrogen (δ15N = 6.8 ‰) isotopic data for E. laurillardi from Brejo da Madre de Deus, Pernambuco (Brazil) and discuss the possibility of an omnivore diet for it. Our data, although ponctual, reinforce the hypothesis that E. laurillardi was a herbivore species.

Palaeobotany ◽  
2014 ◽  
Vol 5 ◽  
pp. 73-93 ◽  
Author(s):  
L. B. Golovneva ◽  
S. V. Shczepetov

The Gedan floristic assemblage occurs from upper layers of the Kholchan Formation of the Okchotsk-Chukotka volcanogenic belt (OCVB). The locality is situated at the Gedan River in the middle part of the Arman River basin. The Gedan assemblage is composed of 6 taxa: Cladophlebis sp., Sphenobaiera sp., Ginkgo ex gr. adiantoides (Ung.) Heer, Taxodium amguemensis (Efimova) Golovn., Metasequoia sp., Pagiophyllum sp. The similarity of the Gedan floristic assemblage with the Karamken and the Khirumki floristic assemblages from the Kholchan Formation of the Okhotsk sector of the OCVB allows us to join them in the Kholchan flora. This flora is distinct from more ancient Arman flora, which dated as the Turonian-Coniacian and from younger Ola flora, which dated as the Santonian-early Campanian. The age of the Kholchan flora is estimated as the Coniacian on the basis of stratigraphic position, presence of Podozamites, Metasequoia and Quereuxia and also isotopic data. This flora is equivalent with the Chaun flora of Central Chukotka, with the Aleeki flora from the Villigha and Toomahni Rivers interfluve and with the Ulya flora from the southern part of the Okhotsk-Chukotka volcanogenic belt.


2019 ◽  
Vol 486 (4) ◽  
pp. 460-465
Author(s):  
E. V. Sharkov ◽  
A. V. Chistyakov ◽  
M. M. Bogina ◽  
O. A. Bogatikov ◽  
V. V. Shchiptsov ◽  
...  

Tiksheozero ultramafic-alkaline-carbonatite intrusive complex, like numerous carbonatite-bearing complexes of similar composition, is a part of large igneous province, related to the ascent of thermochemical mantle plume. Our geochemical and isotopic data evidence that ultramafites and alkaline rocks are joined by fractional crystallization, whereas carbonatitic magmas has independent origin. We suggest that origin of parental magmas of the Tiksheozero complex, as well as other ultramafic-alkaline-carbonatite complexes, was provided by two-stage melting of the mantle-plume head: 1) adiabatic melting of its inner part, which produced moderately-alkaline picrites, which fractional crystallization led to appearance of alkaline magmas, and 2) incongruent melting of the upper cooled margin of the plume head under the influence of CO2-rich fluids  that arrived from underlying zone of adiabatic melting gave rise to carbonatite magmas.


Author(s):  
A. Graham Leslie ◽  
Allen P. Nutman

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Leslie, A. G., & Nutman, A. P. (2000). Episodic tectono-thermal activity in the southern part of the East Greenland Caledonides. Geology of Greenland Survey Bulletin, 186, 42-49. https://doi.org/10.34194/ggub.v186.5214 _______________ Isotopic data from the Renland augen granites of the Scoresby Sund region (Figs 1, 2) provided some of the first convincing support for relicts of potentially Grenvillian tectono-thermal activity within the East Greenland Caledonides. In Renland, Chadwick (1975) showed the presence of major bodies of augen granite (Fig. 2) interpreted by Steiger et al. (1979), on the basis of Rb–Sr whole rock and U–Pb zircon age determinations, to have been emplaced about 1000 Ma ago.


2018 ◽  
Author(s):  
James B. Chapman ◽  
◽  
Michelle Nikolay Dafov ◽  
George E. Gehrels ◽  
Mihai N. Ducea ◽  
...  

2020 ◽  
Author(s):  
Hai Zhou ◽  
Guochun Zhao ◽  
et al.

Table S1: Summary of the samples and sampling positions in this study (sampling sites are marked in Fig. 3); Table S2: U-Pb age data for zircons of (meta-)sedimentary and volcanic rocks in this study; Table S3: Lu-Hf isotopic data for zircons of (meta-)sedimentary and volcanic rocks in this study.


Harmful Algae ◽  
2021 ◽  
Vol 104 ◽  
pp. 102031
Author(s):  
Theresa K. Hattenrath-Lehmann ◽  
Deepak Nanjappa ◽  
Huan Zhang ◽  
Liying Yu ◽  
Jennifer A. Goleski ◽  
...  

Author(s):  
Paola Orozco ◽  
Ricardo Astini ◽  
Jimena Presa ◽  
Patricia Alvarado ◽  
Agostina Venerdini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document