scholarly journals Imaging of articular cartilage: current concepts

Joints ◽  
2014 ◽  
Vol 02 (03) ◽  
pp. 137-140 ◽  
Author(s):  
Mario Ronga ◽  
Gloria Angeretti ◽  
Sergio Ferraro ◽  
Giovanni De Falco ◽  
Eugenio Genovese ◽  
...  

Magnetic resonance imaging (MRI) is the gold standard method for non-invasive assessment of joint cartilage, providing information on the structure, morphology and molecular composition of this tissue. There are certain minimum requirements for a MRI study of cartilage tissue: machines with a high magnetic field (> 1.5 Tesla); the use of surface coils; and the use of T2-weighted, proton density-weighted fast-spin echo (T2 FSE-DP) and 3D fat-suppressed T1-weighted gradient echo (3D-FS T1W GRE) sequences. For better contrast between the different joint structures, MR arthography is a method that can highlight minimal fibrillation or fractures of the articular surface and allow evaluation of the integrity of the native cartilagerepair tissue interface. To assess the biochemical composition of cartilage and cartilage repair tissue, various techniques have been proposed for studying proteoglycans [dGEMRIC, T1rho mapping, sodium (23Na) imaging MRI, etc.], collagen, and water distribution [T2 mapping, “magnetisation transfer contrast”, diffusion-weighted imaging (DWI), and so on]. Several MRI classifications have been proposed for evaluating the processes of joint degeneration (WORMS, BLOKS, ICRS) and post-surgical maturation of repair tissue (MOCART, 3D MOCART). In the future, isotropic 3D sequences set to improve image quality and facilitate the diagnosis of disorders of articular structures adjacent to cartilage.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hasan Banitalebi ◽  
Christian Owesen ◽  
Asbjørn Årøen ◽  
Hang Thi Tran ◽  
Tor Åge Myklebust ◽  
...  

Abstract Purpose To evaluate the effect of imaging plane and experience of observers on the reliability of T2 mapping of native and repair cartilage tissue of the knee. Methods Fifteen consecutive patients from two randomised controlled trials (RCTs) were included in this cross-sectional study. Patients with an isolated knee cartilage lesion were randomised to receive either debridement or microfracture (RCT 1) or debridement or autologous chondrocyte implantation (RCT 2). T2 mapping was performed in coronal and sagittal planes two years postoperatively. A musculoskeletal radiologist, a resident of radiology and two orthopaedic surgeons measured the T2 values independently. Intraclass Correlation Coefficient (ICC) with 95% Confidence Intervals was used to calculate the inter- and intraobserver agreement. Results Mean age for the patients was 36.8 ± 11 years, 8 (53%) were men. The overall interobserver agreement varied from poor to good with ICCs in the range of 0.27– 0.76 for native cartilage and 0.00 – 0.90 for repair tissue. The lowest agreement was achieved for evaluations of repair cartilage tissue. The estimated ICCs suggested higher inter- and intraobserver agreement for radiologists. On medial femoral condyles, T2 values were higher for native cartilage on coronal images (p < 0.001) and for repair tissue on sagittal images (p < 0.001). Conclusions The reliability of T2 mapping of articular cartilage is influenced by the imaging plane and the experience of the observers. This influence may be more profound for repair cartilage tissue. This is important to consider when using T2 mapping to measure outcomes after cartilage repair surgery. Trial registration ClinicalTrials.gov, NCT02637505 and NCT02636881, registered December 2015. Level of evidence II, based on prospective data from two RCTs.


2011 ◽  
Vol 35 (5) ◽  
pp. 653-661 ◽  
Author(s):  
Nabil J. Khoury ◽  
Ziyad Mahfoud ◽  
Karim Z. Masrouha ◽  
Rayan Elkattah ◽  
Toni Assaad ◽  
...  

2015 ◽  
Vol 17 (1) ◽  
pp. 24 ◽  
Author(s):  
Tomoe Hagio ◽  
Chuan Huang ◽  
Aiden Abidov ◽  
Jaspreet Singh ◽  
Bujji Ainapurapu ◽  
...  

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 27-28
Author(s):  
Alessia Pepe ◽  
Nicola Martini ◽  
Rita Borrello ◽  
Vincenzo Positano ◽  
Laura Pistoia ◽  
...  

Introduction.The presence of iron deposits results in a significant reduction in all magnetic resonance imaging (MRI) relaxation times (T1, T2 and T2*). In the clinical setting the T2* technique is the method of choice for cardiac iron quantification and it has revolutionized the management of patients with hemoglopinopathies. Purpose.To compare myocardial T2 against T2* in patients with thalassemia major (TM) for myocardial iron characterization. Methods.133 TM patients (79 females, 38.4±11.3 years) enrolled in the Extension Myocardial Iron Overload in Thalassemia (eMIOT) Network were considered. T2 and T2* images were acquired, respectively, with multi-echo fast-spin-echo and gradient-echo sequences. Global heart T2 and T2* values were obtained by averaging the values in all 16 myocardial segments. The normal T2 range was established as mean±2 standard deviations on data acquired on 80 healthy volunteers (males: 48-56 ms and females: 50-57 ms). The lower limit of normal for global heart T2*, established on the same healthy population, was 32 ms. Results.A significant correlation was detected between global heart T2 and T2* values (R=0.577; P&lt;0.0001) (Figure). Out of the 113 (84.9%) patients with a normal global heart T2* value, none had a decreased global heart T2 value, while 58 (51.3%) had an increased T2 value. Out of the 20 patents with a decreased global heart T2* value, only 10 (50%) had also a reduced T2 value. Conversely, 9 (45.0%) had a normal global heart T2 value and one (4.5) showed an increased T2 value. The 59 patients with increased global heart T2 value were significantly older than the remaining patients (40.8±10.5 vs 36.4±11.6 years; P=0.019) Conclusion.All patients with decreased T2 value had also a decreased T2* value and in half of the patients iron load was undetected by T2, suggesting that T2 mapping does not offer any advantage in terms of sensitivity for MIO assessment. However, more than half of TM patients had an increased T2 value, thus may be caused by the presence of myocardial inflammation and/or edema. So, T2 mapping could reveal subclinical myocardial involvement in TM patients. Figure Disclosures Pistoia: Chiesi Farmaceutici S.p.A.:Other: speakers' honoraria.Meloni:Chiesi Farmaceutici S.p.A.:Other: speakers' honoraria.


NeuroImage ◽  
2017 ◽  
Vol 157 ◽  
pp. 476-485 ◽  
Author(s):  
Ulrike Nöth ◽  
Manoj Shrestha ◽  
Jan-Rüdiger Schüre ◽  
Ralf Deichmann

2011 ◽  
Vol 35 (2) ◽  
pp. 361-369 ◽  
Author(s):  
Colm J. McMahon ◽  
Ananth J. Madhuranthakam ◽  
Jim S. Wu ◽  
Corrie M. Yablon ◽  
Jesse L. Wei ◽  
...  

2002 ◽  
Vol 179 (5) ◽  
pp. 1159-1166 ◽  
Author(s):  
Andrew H. Sonin ◽  
Raymond A. Pensy ◽  
Michael E. Mulligan ◽  
Stephen Hatem

2004 ◽  
Vol 10 (6) ◽  
pp. 607-613 ◽  
Author(s):  
Davies GR ◽  
Tozer DJ ◽  
Cercignani M ◽  
Ramani A ◽  
Dalton CM ◽  
...  

This study used a model for magnetization transfer (MT) to estimate two underlying parameters: the macromolecular proton fraction (f) and the bound pool T2 (T2b) in patients with multiple sclerosis (MS). Sixty patients with clinically definite MS and 27 healthy controls were imaged using: (1) a dual echo fast spin echo sequence, (2) a MT sequence (with ten MT power and offset frequency combinations) and (3) proton density and T1 weighted sequences (for T1 relaxation time estimation). Fourteen normal-appearing white matter (NAWM) regions of interest (ROI) and six normal-appearing gray matter (NAGM) ROIs were outlined in all subjects. Lesions were also contoured in subjects affected by MS. The model was fitted to the data leading to estimates of T2b and f. Results showed that T2b was increased in lesions whereas f was reduced. In NAWM, f was decreased while T2b was only increased in secondary progressive MS. NAWM f correlated modestly with disability. Further studies are needed to investigate the pathological basis of the abnormalities observed.


Cartilage ◽  
2010 ◽  
Vol 1 (2) ◽  
pp. 137-144 ◽  
Author(s):  
Christopher D. Murawski ◽  
Li Foong Foo ◽  
John G. Kennedy

Osteochondral lesions of the talus are common injuries following acute and chronic ankle sprains. Numerous surgical treatment strategies have been employed for treating these lesions; arthroscopic bone marrow stimulation is recognized as the first-line technique to provide fibrocartilage infill of the defect site. While the short- and medium-term outcomes of this technique are good, the long-term outcomes are not yet known. An increasing number of studies, however, show a cause for concern in employing this technique, including declining outcome scores over time. The current authors have therefore developed a treatment strategy based on previously established guidelines in addition to morphological cartilage-sensitive fast spin echo techniques and quantitative T2 mapping magnetic resonance imaging (MRI). Accordingly, the authors advocate arthroscopic bone marrow stimulation in lesion sizes up to 8 mm in diameter and osteochondral autograft transplant (OATS) in lesion sizes greater than 8 mm in diameter. In the absence of long-term studies, confining the use of arthroscopic bone marrow stimulation to smaller lesions may support prolonged joint life by decreasing the rate at which the fibrocartilage ultimately degenerates over time. Employing the OATS procedure in larger lesions has the advantage of replacing “like with like.” The current review examines the role of arthroscopic bone marrow stimulation techniques of the talus.


Sign in / Sign up

Export Citation Format

Share Document