A Study on Experimental Evaluation for Fracture Behavior of Carbon Steel Pipes for High Pressure Service with Local Wall Thinning

2007 ◽  
Vol 345-346 ◽  
pp. 1349-1352 ◽  
Author(s):  
Seok Hwan Ahn ◽  
Kum Cheol Seok ◽  
Ki Woo Nam

The locally wall thinned phenomenon of pipes is simulated as metal loss due to erosion/corrosion. Therefore, fracture behaviors of pipes with local wall thinning are very important for the integrity of nuclear power plant. In this study, monotonic bending tests without internal pressure are conducted on 1.91-inch diameter Schedule 80 STS370 full-scale carbon steel pipe specimens. We investigated fracture strengths and failure modes of locally wall thinned pipes that welded and unwelded by four point bending test. From test results, we could be divided three types of failure modes.

2006 ◽  
Vol 321-323 ◽  
pp. 743-746 ◽  
Author(s):  
Jong Ho Park ◽  
Joon Hyun Lee ◽  
Gyeong Chul Seo ◽  
Sang Woo Choi

In carbon steel pipes of nuclear power plants, local wall thinning may result from erosion-corrosion or flow-accelerated corrosion(FAC) damage. Local wall thinning is one of the major causes for the structural fracture of these pipes. Therefore, assessment of local wall thinning due to corrosion is an important issue in nondestructive evaluation for the integrity of nuclear power plants. In this study, laser-generated ultrasound technique was employed to evaluate local wall thinning due to corrosion. Guided waves were generated in the thermoelastic regime using a Q-switched pulsed Nd:YAG laser with a linear slit array. . In this paper, time-frequency analysis of ultrasonic waveforms using wavelet transform allowed the identification of generated guided wave modes by comparison with the theoretical dispersion curves. Modes conversion and group velocity were employed to detect thickness reduction.


Author(s):  
Jin Weon Kim ◽  
Yeon Soo Na ◽  
Chi Yong Park

Local wall-thinning due to flow-accelerated corrosion is one of the degradation mechanisms of carbon steel piping in nuclear power plant (NPP). It is a main concern in carbon steel piping systems in terms of the safety and operability of the NPP. Recently, the integrity of piping components containing local wall-thinning has become more important for maintaining the reliability of a nuclear piping system, and has been the subject of several studies. However, although wall-thinning in pipe bends and elbows has been frequently reported, its effect on the integrity of pipe bends and elbows has not yet been systematically investigated. Thus, the purpose of this study was to investigate the effect of the circumferential location of a local wall-thinning defect on the collapse behavior of an elbow. For this purpose, the present study used three-dimensional finite element analyses on a 90-degree elbow containing local wall-thinning at the crown of the bend region and evaluated the collapse moment of the wall-thinned elbow under various thinning geometries and loading conditions. The combined internal pressure and bending loads were considered as an applied load. Internal pressure of 0∼20 MPa and both closing-and opening-mode bending were applied. The results of the analyses showed that a reduction in the collapse moment of the elbow due to local wall-thinning was more significant when a defect was located at the crown than when a defect was located at the intrados and extrados. Also, the effect of the internal pressure on the collapse moment depended on the circumferential location of the thinning defect and mode of the bending load.


Author(s):  
Kotoji Ando ◽  
Koji Takahashi ◽  
Masakazu Hisatsune ◽  
Kunio Hasegawa

Monotonic four-point bending tests were conducted using tee pipe specimens having local wall thinning. The effects of local wall thinning on the failure behaviors of tee pipes were investigated. Local wall thinning was machined on the inside of pipes in order to simulate erosion/corrosion metal loss. The configurations of the eroded area were l = 100 mm in eroded axial length, d/t = 0.5 and 0.8 in eroded ratio, and 2θ = 90° and 180° in eroded angle. The area undergoing local wall thinning was subjected to tensile stress. It was found that fracture type could be classified into ovalization or crack initiation, depending on eroded ratio. Three-dimensional elasto-plastic analyses were also carried out using finite element method to discuss the effects of position and geometries of wall thinning in both tee pipes and straight pipes.


Author(s):  
Seok Hwan Ahn ◽  
Ki Woo Nam ◽  
Koji Takahashi ◽  
Kotoji Ando

Fracture behaviors of pipes with local wall thinning are very important for the integrity of power plant piping system. In this study, monotonic bending tests without internal pressure are conducted on 1.91-inch diameter Schedule 80 STS370 full-scale carbon steel pipe specimens. Fracture strengths of locally wall thinned pipes were calculated by elasto-plastic analysis using finite element method. The elasto-plastic analysis was performed by FE code ANSYS. We simulated various types of local wall thinning that can be occurred at pipe surface due to coolant flow. Locally wall thinned shapes were machined to be different in size along the circumferential or axial direction of straight pipes. We investigated fracture strengths and failure modes of locally wall thinned pipes by four-point bending test. From the test results, failure modes could be divided three types, ovalization, local buckling and crack initiation. And, the allowable limit of pipes with local wall thinning was investigated. In addition, we compared the simulated results by finite element analysis with experimental data. The failure mode, fracture strength and fracture behavior obtained from the tests showed well agreement with analytic results.


Author(s):  
Koji Takahashi ◽  
Kotoji Ando ◽  
Masakazu Hisatsune ◽  
Kunio Hasegawa

Monotonic four-point bending tests were conducted using tee pipe specimens having local wall thinning. The effects of local wall thinning on the fracture behaviors of tee pipes were investigated. Local wall thinning was machined on the inside of pipes in order to simulate erosion/corrosion metal loss. The configurations of the eroded area were l = 100 mm in eroded axial length, d/t = 0.5 and 0.8 in eroded ratio, and 2θ = 90° in eroded angle. The area undergoing local wall thinning was subjected to either tensile or compressive stress. Fracture behaviors of the tee pipes were compared with those of straight pipes. It was found that fracture type could be classified into ovalization, local buckling, and crack initiation, depending on pipe shape, eroded ratio, and stress at the eroded area. Three-dimensional elasto-plastic analyses were also carried out using the finite element method, which is able to accurately simulate fracture behaviors.


Author(s):  
Kunio Hasegawa ◽  
Toshiyuki Meshii ◽  
Douglas A. Scarth

One of the more common modes of degradation in power plant piping has been wall thinning due to erosion-corrosion or flow-accelerated corrosion. Extensive work has been performed to understand flow-accelerated corrosion mechanisms and develop fracture criteria of locally thinned pipes, since the tragic events at Surry Unit 2 and Mihama Unit 3. A large number of tests have been performed on carbon steel pipes, elbows and tees with local wall thinning. In addition, the American Society of Mechanical Engineers Boiler and Pressure Vessel Code provides procedures in Code Case N-597-2 for evaluation of wall thinning in pipes. This paper provides validation of the evaluation procedures in Code Case N-597-2 by comparing with the field rupture data and pipe burst test data. The allowable wall thinning from the Code Case N-597-2 procedures is shown to maintain adequate margins against rupture.


Author(s):  
Ken Inoue ◽  
Koji Takahashi ◽  
Kotoji Ando ◽  
Seok Hwan Ahn ◽  
Ki Woo Nam ◽  
...  

Monotonic four-point bending tests were conducted using straight pipe specimens 102 mm in diameter with local wall thinning in order to investigate the effects of the depth, shape, and location of wall thinning on the deformation and failure behavior of pipes. The local wall thinning simulated erosion/corrosion metal loss. The deformation and fracture behavior of the straight pipes with local wall thinning was compared with that of non wall-thinning pipes. The failure modes were classified as local buckling, ovalization, or crack initiation depending on the depth, shape, and location of the local wall thinning. Three-dimensional elasto-plastic analyses were carried out using the finite element method. The deformation and failure behavior, simulated by finite element analyses, coincided with the experimental results.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Kunio Hasegawa ◽  
Toshiyuki Meshii ◽  
Douglas A. Scarth

One of the more common modes of degradation in power plant piping has been wall thinning due to erosion-corrosion or flow-accelerated corrosion. Extensive work has been performed to understand flow-accelerated corrosion mechanisms and develop fracture criteria of locally thinned pipes since the tragic events at Surry Unit 2 and Mihama Unit 3. A large number of tests have been performed on carbon steel pipes, elbows, and tees with local wall thinning. In addition, the American Society of Mechanical Engineers Boiler and Pressure Vessel Code provides procedures in Code Case N-597-2 for the evaluation of wall thinning in pipes. This paper provides validation of the evaluation procedures in Code Case N-597-2 by comparing with the field rupture data and pipe burst test data. The allowable wall thinning from the Code Case N-597-2 procedures is shown to maintain adequate margins against rupture.


Sign in / Sign up

Export Citation Format

Share Document