Research on Damping Vibration Reduction Design Method of Aeroengine Supporting Structure System

2021 ◽  
Author(s):  
Chao Li ◽  
Binglong Lei ◽  
Yanhong Ma ◽  
Jie Hong
Author(s):  
Chao Li ◽  
Binglong Lei ◽  
Yanhong Ma ◽  
Jie Hong

Abstract Typical turbofan engine-support-structure systems having a high thrust-to-weight ratio are light, and the structure primarily comprises a plate and shells. The local vibration response of the support structure is excessively large when different frequency loads are applied. A structural vibration response control method based on dry friction damping is proposed to control the excessive vibration response. A dry friction damper with dynamic suction was designed to enhance the damping characteristics of the rotor supporting structure system in the wide frequency domain, without sacrificing the dynamic stiffness of the structure. The system is designed to effectively control the vibration response of the supporting structure at the working-speed frequency. Through theoretical modeling and simulation analyses, the influence of friction contact and damper structure characteristics on the damping effect is described quantitatively. Furthermore, the design idea and the damping process of the supporting structure are described. The calculation results show that the contact friction of the dry friction damper can consume the vibration energy of the supporting frame. A reasonable design of the contact characteristics and geometric configuration parameters of the damper can further optimize the vibration-reduction effect, and thereby improve the vibration response control design of the supporting structure system of aeroengines.


2013 ◽  
Vol 351-352 ◽  
pp. 1057-1060 ◽  
Author(s):  
Xi Yun Dai ◽  
Xiang Yun Kong ◽  
Lin Tian

Suspend-dome structure form which colligates advantages of cable dome and reticulated shell is a new type spatial hybrid structure system. This article introduced the configuration and principle of suspend-dome structure system, and researched the structural behavior influence by altering the joint stiffness, vector height of the suspend-dome and the loop cable pretension. The results show that suspend-dome structure should make comprehensive consideration on interaction between vector height, prestress application and other factors, and relevant optimizing design method can be adopted in the design.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 13
Author(s):  
Zhiwei Yan ◽  
Dagang Liu ◽  
Zhilong Wang ◽  
Daming Zhao ◽  
Hongtao Tian

Among several design methods of tunnel supporting structure, the load-structure method is widely used in different countries, but the determination of load is essential in this design method. The problem of rockburst is becoming more prominent as tunnel engineering enters the deep underground space. However, the research on the impact load on the supporting structure is insufficient in relevant fields. Therefore, from the perspective of energy, this paper deduces the method and model for calculating the impact load of the rockburst tunnel acting on the supporting structure by using the method of structural mechanics first, after the location effect of impact load is determined under different section types and different section sizes. The results indicated that: dynamic load factor K is related to the stiffness EI and supporting size coefficient K0 of the supporting structure, also the difference of impact load in different sections is proved. Tunnel rockburst-prone location is related to lateral pressure coefficient, thus when λ = 1, the probability of rockburst in the whole circular tunnel is the same, while side wall and vault are prone to rockburst in single-track horseshoe tunnel, and the side wall is prone to rockburst in double-track horseshoe tunnel; furthermore when λ > 1, the vault and the inverted arch are prone to rockburst; additionally, when λ < 1, the rockburst is most likely to occur in the arch waist of the circular tunnel and the side walls and the arch waist of the horseshoe tunnel. Finally, the rockburst tunnel’s local load-structure calculation model and the calculation process based on the model are provided.


2013 ◽  
Vol 330 ◽  
pp. 677-680 ◽  
Author(s):  
Hai Lin Wang ◽  
Nong Zhang ◽  
Di Cao

t is made the system vibration analysis complexity that the coupling between the fluid-filled pipes and its support structure. Based on the finite element method, the liquid-filled pipe and a supporting structure are firstly modeled respectively. The obtained two sub-system models are then combined using their common nodes displacement. Based on the combined system, the coupled vibration characteristics of the liquid-filled pipe and the supporting structure system are analyzed. The analysis results show that, the strong coupling vibration modes are existed in the support structure and liquid-filled pipe system. If we change the mass and stiffness of pipe, some orders of vibration performance will change obviously, especially for those controlled by the pipe. However, for the vibration decided by the support structure, it is uselessly to change the mass matrix or stiffness matrix of the pipe.


Author(s):  
Monica Ciminello ◽  
Jean-Franc¸ois Deu¨ ◽  
Roger Ohayon ◽  
Salvatore Ameduri

In this paper we present numerical results concerning vibration reduction of structural-acoustic systems using the synchronized switch control technique. In order to develop a general procedure to model the coupled system (composed by the fluid domain, the structure and the piezoelectric elements), the idea is to use the performances of a standard commercial code such as Nastran. A symmetric reduced order model is derived from a general finite element description through the extraction of appropriate system matrices. For sake of brevity, we just recall that depending upon the choice of fluid field variables, non symmetric formulations are usually obtained (so-called displacement-pressure formulations), the symmetrization can be derived through appropriate choice of fluid field variables [1, 2]. A simple fluid-structure system for which an analytic solution exists will be used to verify the finite element results and to demonstrate the capabilities of the control procedure. Referring to experimental tests [3], the system consists of a straight air-filled tube with a square cross section. The tube is a rigid cavity with an elastic plate at one end and a piezoelectric patch bonded in its centre. Firstly, the conservative structural-acoustic problem is presented. The symmetric variational and finite element formulations are then described. The model is constructed using Nastran software and the finite element matrices are then extracted and assembled in Matlab. In a second step, the electro-mechanical coupling matrices are built using three-dimensional finite elements in order to take into account local moments of the piezoelectric wafers according to the equivalent thermal coefficient theory [4, 5]. Finally, the reduced electro-mechanical fluid-structure system, obtained through a modal projection, is integrated in time using a Newmark type algorithm. Numerical results are then presented showing the performance of the synchronized switch damping for vibro-acoustic applications in the low frequency domain (low modal density).


2011 ◽  
Vol 243-249 ◽  
pp. 67-71
Author(s):  
Wei Zhang ◽  
Ji Wen Zhang ◽  
Yong Ming Tu

A novel building structure system, namely core-tube vibration-reduction suspended structure (CVRSS), is put forward in this paper. The basic composition and calculation model for the structure system are described. The El Centro and Taft seismic waves are used to calculate the dynamic characteristics of the structure in the time domain, of which dynamic responses are proved satisfactory. Taking the top floor displacement of the primary structure and the relative displacement between bottom layer of suspended segments and top floor of core-tube as objective function, the finite element model is established, and comparative analysis with common core-tube suspended structures (CCSS) is performed. The results show that the top floor displacement of CVRSS is about 70% of that of CCSS, and the vibration-reduction performance of CVRSS is excellent.


Sign in / Sign up

Export Citation Format

Share Document