Time History Analysis of Seismic Response of Novel Core-Tube Vibration-Reduction Suspended Structures

2011 ◽  
Vol 243-249 ◽  
pp. 67-71
Author(s):  
Wei Zhang ◽  
Ji Wen Zhang ◽  
Yong Ming Tu

A novel building structure system, namely core-tube vibration-reduction suspended structure (CVRSS), is put forward in this paper. The basic composition and calculation model for the structure system are described. The El Centro and Taft seismic waves are used to calculate the dynamic characteristics of the structure in the time domain, of which dynamic responses are proved satisfactory. Taking the top floor displacement of the primary structure and the relative displacement between bottom layer of suspended segments and top floor of core-tube as objective function, the finite element model is established, and comparative analysis with common core-tube suspended structures (CCSS) is performed. The results show that the top floor displacement of CVRSS is about 70% of that of CCSS, and the vibration-reduction performance of CVRSS is excellent.

2011 ◽  
Vol 382 ◽  
pp. 80-83 ◽  
Author(s):  
Zhen Zhong Shen ◽  
Hua Chun Ren

According to the practical situation, the 3-D finite element model of Sandaowan underground powerhouse caverns on Taolai River is set up for analyzing the behaviors under earthquake action. Based on static stress field of the surrounding rock mass, and with the selection of appropriate seismic waves for dynamic time-history analysis method, the dynamic responses of underground powerhouse caverns are analyzed. It is shown that the time-history waveform of dynamic displacement of given points has a very similar variation regularity with that of acceleration, and the wave phases of both are almost synchronous. The dynamic displacements and principal stresses of the given points on rock walls are with the vibration of low-frequency characteristics, the acceleration response is with the vibration of high-frequency characteristics.


2014 ◽  
Vol 1030-1032 ◽  
pp. 811-814
Author(s):  
Lin Wang ◽  
Guo Jian Shao ◽  
Feng Hu

Based on the software FLAC3D, we set up the dynamic calculation model. By applying the horizontal (x direction) seismic waves at the bottom of the model, we simulate the earthquake action to the caisson foundation and the soil body around it and obtain the time-history curves of the acceleration, the velocity and the displacement of the key points in the model in x direction. We also obtain the rotation angle time-history curve and the relative displacement time-history curve of two key points at the bottom of the caisson foundation. Through the analysis on these curves, we know the maximum values of the acceleration, the velocity and the displacement of the top portion of the caisson foundation are 393.6 cm/s2, 75.9 cm/s, 28.5 cm, and the maximum rotation angle of the caisson foundation is 0.08°. We sure the bond of the caisson foundation bottom and the below soil layer is firm and the relative displacement is only 1.3 mm. Looked from the overall,the anti-seismic property of the caisson foundation is good. The above results provide a reliable basis for the future research on the dynamic response of caisson foundation.


2014 ◽  
Vol 533 ◽  
pp. 154-158
Author(s):  
He Peng Wang ◽  
Zhong Gen Xu ◽  
Chang Gen Deng

By inputting two groups of seismic waves with phase differences of 0.16s, 0.34s, 0.5 and 0.34s, 0.66s, 1.0s to column elements divided into four parts of lower story of finite element model with insertion method, this paper analyzed the influence of wave passage effect on seismic responses of truss string structure of Guangzhou Convention and Exhibition Centre co-working with its base frame by time history analysis method. The results show that: because of natural vibration characteristics of structure, wave traveling has some effect on seismic responses of truss string structure of Guangzhou Convention and Exhibition Centre.


2011 ◽  
Vol 194-196 ◽  
pp. 2018-2023
Author(s):  
Jin Bian ◽  
Lian Jin Tao ◽  
Wen Pei Wang ◽  
Bo Zhang

Underground subway RC structures suffered significant damage during many earthquakes, so it is important to study the seismic behavior on RC subway structure. The shaking table model test is made of the Beijing typical subway station structure. In this article, the test is introduced briefly; then, the acceleration history curves are analyzed. By the test, it is found that the interaction exits between structure and soil. Under the low intensity earthquake, the underground structure will exert a very small influence on soil and vibrates with soil; under the high intensity earthquake, the soil will exert a large thrust on the underground structure and the relative displacement exists between them. Moreover, At the bottom of the structure side wall, the peak acceleration is larger than it in soil around the place, and at the top and middle of the structure side wall, the peak accelerations are smaller than them in soil around the place; with the depth increase, decrease the peak value, the excellence frequency and its amplitude of the acceleration time history.


2011 ◽  
Vol 90-93 ◽  
pp. 1406-1411
Author(s):  
Qiang Song ◽  
Yong Zhang ◽  
Yong Xu

Seismic behavior of the steel & concrete hybrid structure is studied by Sap2000, including modal analysis, response spectrum analysis and time-history analysis. Also, a simplified calculation model of the steel & concrete hybrid structure is established, and some formulae have been derived from this model, such as the natural frequency, top displacement, shear of both the core tube and the steel frame, on the basis of finite element method of bar system. Those formulae can be used to explain and approximately count the seismic response of steel & concrete hybrid structure.


2015 ◽  
Vol 799-800 ◽  
pp. 746-750
Author(s):  
Ai Min Gong ◽  
Hai Yan Huang ◽  
Hui Ying Zhang

A finite element model of tailiings dam was used to analyze the dynamic responses of the stress field, displacement and acceleration of the dam with the dynamic time-history response analysis method in this paper. The time-history curves of different responses were obtained. And an evaluation for dynamic stability of the tailings dam was also discussed. The analysis result shows that this case can provide a certain reference value for the dynamic calculation and the dynamic stability analysis of tailings dam under seismic load.


Author(s):  
Wenhua Wang ◽  
Zhen Gao ◽  
Xin Li ◽  
Torgeir Moan ◽  
Bin Wang

The finite element model (FEM) of a pentapod offshore wind turbine (OWT) is established in the newly compiled FAST. The dynamic responses of the OWT are analyzed in detail. Further, a tuned mass damper as a passive control strategy is applied in order to reduce the OWT responses under seismic loads. The influence of the tuned mass damper (TMD) locations, mass and control frequencies on the reduction of OWT responses are investigated. A general configuration of TMD can effectively reduce the local and global responses to some degree, but due to the complexity of characteristics of the OWT structure and seismic waves, the single TMD can not obtain consistent controlling effects.


2011 ◽  
Vol 137 ◽  
pp. 154-158
Author(s):  
Wen Liang Qiu ◽  
Meng Jiang ◽  
Xing Bo Zhang

For floating system cable-stayed bridge, the longitudinal displacement of girder and moments of towers are very large when strong earthquake happens. The dampers installed between girder and towers in longitudinal direction can reduce efficiently displacement of the girder and moments of the towers induced by longitudinal seismic waves. Using spatial finite element model and time history analysis method, the influences of design parameters of viscous damper on seismic responses of cable-stayed bridge are studied in detail. The results of study show that, with the damping constant increasing, the longitudinal displacement of girder and moment of tower decrease, and the forces of damper increase. With velocity exponent increasing, the longitudinal displacement of girder and moment of tower increase, and the force of damper decrease. So, when determining the design parameters of damper, the cost of dampers, difficulty of construction and seismic reduction effects should be considered together.


2013 ◽  
Vol 302 ◽  
pp. 622-627
Author(s):  
Ji Yao ◽  
Liang Cao ◽  
Hui Min Wang ◽  
Li Jie Zhang ◽  
Liang Wu ◽  
...  

The three dimensional finite element model of a groundwater hydraulic tunnel was eatablished in this paper by FEM software ANSYS, two seismic waves of bedrock wave and EI-centro wave in similar sites were entered, and dynamic time history method was applied to compare the seismic response of the two hydraulic tunnels which were under rigid boundary conditions and viscoelastic boundary conditions respectively. The results showed that, the dynamic response of the model under rigid boundary conditions was larger than the response under viscoelastic boundary, and the viscoelastic boundary was closer to the actual situation. Under viscoelastic boundary conditions, the smaller depth of the hydraulic tunnel, the more intensive of the seismic response.


2012 ◽  
Vol 549 ◽  
pp. 879-883
Author(s):  
Lu Ping Yi ◽  
Jing Ji

In order to better understand seismic performance of tower body structure in a square, the symbol tower finite element model is established using the finite element software ANSYS. Modal analysis is carried out and the first 3 natural frequencies and vibration modes of marking tower are obtained. By selecting 2 group natural seismic waves and a synthetic seismic wave the seismic time-history analysis of the model is performed, the symbol tower response under the earthquake action is obtained and the maximum lateral displacement and the maximum stress of symbol tower meet the standard requirements, so mark tower under earthquake are safe. These can provide reference for the same type of engineering design.


Sign in / Sign up

Export Citation Format

Share Document