Bio-Inspired High Pressure Turbine Optimization Strategy for Hybrid-Electric Engines Operating at Off-Design

2021 ◽  
Author(s):  
Paht Juangphanich ◽  
Guillermo Paniagua ◽  
Vikram Shyam
Author(s):  
Paht Juangphanich ◽  
Guillermo Paniagua ◽  
Vikram Shyam

Abstract Incident tolerant turbine design is a major challenge for any turbomachinery designer. High Pressure Turbines experience large aerodynamic losses when operating at reduced massflow and lower RPM. Turbine performance is adversely impacted at positive incidence angles due to shifting of the stagnation point towards the pressure side. This can cause a separation bubble in the aft suction side region. In marine life, a diverse range of animals have developed wavy surfaces along their fins and bodies to prevent stall or flow separation at engine-relevant Reynolds numbers, but for incompressible fluids. This paper describes a novel parameterization strategy for optimizing wavy-shaped airfoils to offer superior performance at off-design operation, in the present case, at positive incidence. The methodology can be applied to all types of aircraft engines: one, two, or three spool engine configurations. The parameterized geometries are compatible with existing gas turbine manufacturing processes including casting and additive manufacturing [1,2]. The objective of the optimization was to discover the appropriate waveform combinations at the airfoil leading edge, trailing edge, and suction side characterized by their amplitude, phase, and frequency, such that the airfoils offer the lowest possible pressure losses at 15 degrees positive incidence. The optimization was performed on a high pressure turbine passage, optimized for best efficiency at nominal conditions, while maintaining the same exit flow angle and massflow. The Reynolds number is 850,000. Based on 286 designs produced, the results of the optimization show a clear benefit at positive incidence, at the expense of a slightly lower performance at nominal conditions. A final comparison of the optimized rotor with stage is included in the analysis.


Author(s):  
Cheng-Wei Fei ◽  
Wen-Zhong Tang ◽  
Guang-chen Bai ◽  
Zhi-Ying Chen

Around the engineering background of the probabilistic design of high-pressure turbine (HPT) blade-tip radial running clearance (BTRRC) which conduces to the high-performance and high-reliability of aeroengine, a distributed collaborative extremum response surface method (DCERSM) was proposed for the dynamic probabilistic analysis of turbomachinery. On the basis of investigating extremum response surface method (ERSM), the mathematical model of DCERSM was established. The DCERSM was applied to the dynamic probabilistic analysis of BTRRC. The results show that the blade-tip radial static clearance δ = 1.82 mm is advisable synthetically considering the reliability and efficiency of gas turbine. As revealed by the comparison of three methods (DCERSM, ERSM, and Monte Carlo method), the DCERSM reshapes the possibility of the probabilistic analysis for turbomachinery and improves the computational efficiency while preserving computational accuracy. The DCERSM offers a useful insight for BTRRC dynamic probabilistic analysis and optimization. The present study enrichs mechanical reliability analysis and design theory.


Author(s):  
Qingjun Zhao ◽  
Fei Tang ◽  
Huishe Wang ◽  
Jianyi Du ◽  
Xiaolu Zhao ◽  
...  

In order to explore the influence of hot streak temperature ratio on low pressure stage of a Vaneless Counter-Rotating Turbine, three-dimensional multiblade row unsteady Navier-Stokes simulations have been performed. The predicted results show that hot streaks are not mixed out by the time they reach the exit of the high pressure turbine rotor. The separation of colder and hotter fluids is observed at the inlet of the low pressure turbine rotor. After making interactions with the inner-extending shock wave and outer-extending shock wave in the high pressure turbine rotor, the hotter fluid migrates towards the pressure surface of the low pressure turbine rotor, and the most of colder fluid migrates to the suction surface of the low pressure turbine rotor. The migrating characteristics of the hot streaks are predominated by the secondary flow in the low pressure turbine rotor. The effect of buoyancy on the hotter fluid is very weak in the low pressure turbine rotor. The results also indicate that the secondary flow intensifies in the low pressure turbine rotor when the hot streak temperature ratio is increased. The effects of the hot streak temperature ratio on the relative Mach number and the relative flow angle at the inlet of the low pressure turbine rotor are very remarkable. The isentropic efficiency of the Vaneless Counter-Rotating Turbine decreases as the hot streak temperature ratio is increased.


Author(s):  
Alparslan Emrah Bayrak ◽  
Yi Ren ◽  
Panos Y. Papalambros

A hybrid-electric vehicle powertrain architecture consists of single or multiple driving modes, i.e., connection arrangements among engine, motors and vehicle output shaft that determine distribution of power. While most architecture development work to date has focused primarily on passenger cars, interest has been growing in exploring architectures for special-purpose vehicles such as vans or trucks for civilian and military applications, whose weights or payloads can vary significantly during operations. Previous findings show that the optimal architecture can be sensitive to vehicle weight. In this paper we investigate architecture design under a distribution of vehicle weights, using a simulation-based design optimization strategy with nested supervisory optimal control and accounting for powertrain complexity. Results show that an architecture under a single load has significant differences and lower fuel efficiency than an architecture designed to work under a variety of loading scenarios.


Author(s):  
Thomas E. Dyson ◽  
David B. Helmer ◽  
James A. Tallman

This paper presents sliding-mesh unsteady CFD simulations of high-pressure turbine sections of a modern aviation engine in an extension of previously presented work [1]. The simulation included both the first and second stages of a two-stage high-pressure turbine. Half-wheel domains were used, with source terms representing purge and film flows. The end-wall flow-path cavities were incorporated in the domain to a limited extent. The passage-to-passage variation in thermal predictions was compared for a 1D and 2D turbine inlet boundary condition. Substantial impact was observed on both first and second stage vanes despite the mixing from the first stage blade. Qualitative and quantitative differences in surface temperature distributions were observed due to different ratios between airfoil counts in the two domains.


Author(s):  
Chaoshan Hou ◽  
Hu Wu

The flow leaving the high pressure turbine should be guided to the low pressure turbine by an annular diffuser, which is called as the intermediate turbine duct. Flow separation, which would result in secondary flow and cause great flow loss, is easily induced by the negative pressure gradient inside the duct. And such non-uniform flow field would also affect the inlet conditions of the low pressure turbine, resulting in efficiency reduction of low pressure turbine. Highly efficient intermediate turbine duct cannot be designed without considering the effects of the rotating row of the high pressure turbine. A typical turbine model is simulated by commercial computational fluid dynamics method. This model is used to validate the accuracy and reliability of the selected numerical method by comparing the numerical results with the experimental results. An intermediate turbine duct with eight struts has been designed initially downstream of an existing high pressure turbine. On the basis of the original design, the main purpose of this paper is to reduce the net aerodynamic load on the strut surface and thus minimize the overall duct loss. Full three-dimensional inverse method is applied to the redesign of the struts. It is revealed that the duct with new struts after inverse design has an improved performance as compared with the original one.


2019 ◽  
Vol 36 (3) ◽  
pp. 245-256
Author(s):  
Yoonki Kim ◽  
Sanga Lee ◽  
Kwanjung Yee ◽  
Young-Seok Kang

Abstract The purpose of this study is to optimize the 1st stage of the transonic high pressure turbine (HPT) for enhancement of aerodynamic performance. Isentropic total-to-total efficiency is designated as the objective function. Since the isentropic efficiency can be improved through modifying the geometry of vane and rotor blade, lean angle and sweep angle are chosen as design variables, which can effectively alter the blade geometry. The sensitivities of each design variable are investigated by applying lean and sweep angles to the base nozzle and rotor, respectively. The design space is also determined based on the results of the parametric study. For the design of experiment (DoE), Optimal Latin Hypercube sampling is adopted, so that 25 evenly distributed samples are selected on the design space. Sequentially, based on the values from the CFD calculation, Kriging surrogate model is constructed and refined using Expected Improvement (EI). With the converged surrogate model, optimum solution is sought by using the Genetic Algorithm. As a result, the efficiency of optimum turbine 1st stage is increased by 1.07 % point compared to that of the base turbine 1st stage. Also, the blade loading, pressure distribution, static entropy, shock structure, and secondary flow are thoroughly discussed.


Sign in / Sign up

Export Citation Format

Share Document