Thermo-Economic Assessment Under Electrical Market Uncertainties of a Combined Cycle Gas Turbine Integrated With a Flue Gas-Condensing Heat Pump

2021 ◽  
Author(s):  
Alberto Vannoni ◽  
Andrea Giugno ◽  
Alessandro Sorce
2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Alberto Vannoni ◽  
Andrea Giugno ◽  
Alessandro Sorce

Abstract Renewable energy penetration is growing, due to the target of greenhouse-gas-emission reduction, even though fossil fuel-based technologies are still necessary in the current energy market scenario to provide reliable back-up power to stabilize the grid. Nevertheless, currently, an investment in such a kind of power plant might not be profitable enough, since some energy policies have led to a general decrease of both the average single national price of electricity (PUN) and its variability; moreover, in several countries, negative prices are reached on some sunny or windy days. Within this context, combined heat and power (CHP) systems appear not just as a fuel-efficient way to fulfill local thermal demand but also as a sustainable way to maintain installed capacity able to support electricity grid reliability. Innovative solutions to increase both the efficiency and flexibility of those power plants, as well as careful evaluations of the economic context, are essential to ensure the sustainability of the economic investment in a fast-paced changing energy field. This study aims to evaluate the economic viability and environmental impact of an integrated solution of a cogenerative combined cycle gas turbine power plant with a flue gas condensing heat pump. Considering capital expenditure, heat demand, electricity price, and its fluctuations during the whole system life, the sustainability of the investment is evaluated taking into account the uncertainties of economic scenarios and benchmarked against the integration of a cogenerative combined cycle gas turbine power plant with a heat-only boiler (HOB).


Author(s):  
Alberto Vannoni ◽  
Andrea Giugno ◽  
Alessandro Sorce

Abstract Renewable energy penetration is growing, due to the target of greenhouse-gas-emission reduction, even though fossil fuel-based technologies are still necessary in the current energy market scenario to provide reliable back-up power to stabilize the grid. Nevertheless, currently, an investment in such a kind of power plant might not be profitable enough, since some energy policies have led to a general decrease of both the average price of electricity and its variability; moreover, in several countries negative prices are reached on some sunny or windy days. Within this context, Combined Heat and Power systems appear not just as a fuel-efficient way to fulfill local thermal demand, but also as a sustainable way to maintain installed capacity able to support electricity grid reliability. Innovative solutions to increase both the efficiency and flexibility of those power plants, as well as careful evaluations of the economic context, are essential to ensure the sustainability of the economic investment in a fast-paced changing energy field. This study aims to evaluate the economic viability and environmental impact of an integrated solution of a cogenerative combined cycle gas turbine power plant with a flue gas condensing heat pump. Considering capital expenditure, heat demand, electricity price and its fluctuations during the whole system life, the sustainability of the investment is evaluated taking into account the uncertainties of economic scenarios and benchmarked against the integration of a cogenerative combined cycle gas turbine power plant with a Heat-Only Boiler.


2018 ◽  
Vol 22 (5) ◽  
pp. 2203-2213 ◽  
Author(s):  
Magdalena Wolf ◽  
Thomas Detzlhofer ◽  
Tobias Proll

In this paper, the thermodynamic and economic efficiency of three different heat supply processes are compared, based on exergy flows and costs of heat. A gas turbine process with a heat recovery boiler, a gas and steam turbine combined cycle process and a high temperature heat pump system recovering waste heat are analysed. The aim is to provide heat as 4 bar(abs) saturated steam. The economic analysis bases on the comparison of the consumption-related costs of heat, the capital-related costs of heat, and the operation-related costs of heat. The results show that the heat pump system has higher exergetic efficiency than the gas turbine or the gas turbine combined cycle process. For the consumption related costs, the economic calculation shows that the operation of a heat pump, working with a coefficient of performance of four and for a natural gas price of 25 ?/MWh, is the cheapest way of heat production as long as the electricity price is lower than 45 ?/MWh. For the period from January 2013 until June 2016 the total costs of heat, based on real gas and electricity prices from the European Energy Exchange, are calculated and analysed. The results show that the share of heat provided by the heat pump system varies between 45% and 76%. Especially in 2013 and 2014, the economic conditions for operating heat pumps were very good. Since October 2015 the natural gas prices have seen a decrease which favours industrial heat supply with combined heat and power systems.


Author(s):  
Robin C. Payne ◽  
Manuel Arias ◽  
Vassilis Stefanis

For the next generation of combined cycles, it is essential to not only improve the performance of a gas turbine combined cycle power plant, but also reduce its environmental impact. Flue Gas Recirculation is a useful method to increase CO2 concentration in the exhaust stream, allowing a smaller and lower cost carbon capture plant than would be required without FGR. Conventional FGR methodology requires a complex mixer with long mixing section to achieve acceptable inlet conditions for the GT compressor. A novel approach is presented, where the method of introducing the flue gas to the compressor has been substantially rethought to provide a low cost and robust FGR solution for carbon capture and sequestration applications. In this paper, CFD analysis of the flow in the intake section is used to demonstrate the operating principle of such a method, and cycle modelling calculations to compare its performance with a more conventional approach.


2017 ◽  
Vol 105 ◽  
pp. 174-181 ◽  
Author(s):  
Antonio M. Pantaleo ◽  
Sergio M. Camporeale ◽  
Adio Miliozzi ◽  
Valeria Russo ◽  
Giacomo Scarascia Mugnozza ◽  
...  

Author(s):  
Peter D. J. Hoppesteyn ◽  
Jans Andries ◽  
Klaus R. G. Hein

Advanced integrated gasification combined cycle (IGCC) plants promise to be efficient and environmentally friendly systems to utilise solid fuels for the production of electricity and heat. An IGCC system consists of a gasifier, producing a low calorific value (LCV) fuel gas, and a gas turbine in which the LCV fuel gas is being combusted. At this time some demonstration IGCC plants have been commissioned in the United States and Europe. A sound understanding of the interaction between the gasifier and the gas turbine combustor is critical for successful operation of an IGCC system. Reliable theoretical and experimental information on the characteristics of the gas turbine as a whole and the combustor as such, leading to this information is needed prior to commercialisation of these IGCC systems. The combustion of natural gas in gas turbine combustors has been studied extensively. The combustion of coal-derived LCV fuel gas however has been studied in much less detail. To obtain more fundamental data on the combustion of LCV fuel gas, a 1.5 MW pressurised fluidised bed gasifier (PFBG) with a separate pressurised topping combustor (PTC) has been designed, built and operated at Delft University of Technology (The Netherlands). The maximum system pressure is 10 bar. Experiments have been performed at 8 bar, using recirculated flue gas, steam and oxygen as gasifying agents. The produced LCV fuel gas is combusted in an oxygen blown PTC. In this way a flue gas with a high carbon dioxide concentration can be obtained from which the carbon dioxide can be removed more easily than from flue gases. A numerical model has been constructed to simulate the combustion of the LCV fuel gas in the PTC. A detailed description of the test rig will be given. The first experimental results will be described and compared with simulation results obtained with the commercial Computational Fluid Dynamics code Fluent version 4.3. Finally the future work will be described.


2013 ◽  
Author(s):  
Kunlei Liu ◽  
Liangyong Chen ◽  
Yi Zhang ◽  
Lisa Richburg ◽  
James Simpson ◽  
...  

Author(s):  
Jacek Dzierzgowski ◽  
Stanislaw Sobkowski

The article describes conversion of conventional steam cycle with 200 MW turbine into combined steam-gas cycle with pressure fluidized bed combustion boiler. In order to raise cycle thermal efficiency an additional combustion chamber before a gas turbine was introduced. Two modifications of the combined cycle were considered. In one of them natural gas in the additional combustion chamber is burnt with the boiler flue gas only. In the other gas is burnt with additional air stream taken from behind the gas turbine compressor. Optimizing calculations of the cycle thermal efficiency in function of some cycle’s main parameters were carried out.


Sign in / Sign up

Export Citation Format

Share Document