Experimental and Numerical Analysis on the Influence of Direct Fuel Injection Into O2-Depleted Environment of a GDI-HCCI Engine

2021 ◽  
Author(s):  
Ratnak Sok ◽  
Jin Kusaka
2017 ◽  
Vol 169 (2) ◽  
pp. 137-140
Author(s):  
Michał GĘCA ◽  
Jacek HUNICZ ◽  
Piotr JAWORSKI

Despite the fact that HCCI engines are distinguished by mixture homogeneity, some degree of stratification always appears inside a combustion chamber. It is especially applied to residual effect engines utilizing negative valve overlap. Mixture stratification is a result of the imperfect mixing of fresh air with trapped residuals. Direct fuel injection introduces stratification as well, due to fuel vaporization. As a consequence, the temperature within the combustion chamber is uneven. Thermal stratification affects auto-ignition timing and combustion evolution in a high extent. The purpose of this study was to evaluate a degree of thermal stratification in HCCI engine utilizing negative valve overlap. Investigations were performed using three-dimensional CFD model of the combustion system, made by using AVL FIRE software. Simulations were realized for various timings of fuel injection into the cylinder. It was found that fuel injection timing had a significant effect on the thermal stratification and resulting auto-ignition timing.


Author(s):  
Jason S. Souder ◽  
J. Hunter Mack ◽  
J. Karl Hedrick ◽  
Robert W. Dibble

Homogeneous charge compression ignition (HCCI) engines lack direct in-cylinder mechanisms, such as spark plugs or direct fuel injection, for controlling the combustion timing. Many indirect methods have been used to control the combustion timing in a HCCI engine. With any indirect method, it is important to have a measure of the combustion timing so the control inputs can be adjusted for the next cycle. In this paper, it is shown that microphones and knock sensors can be used to detect combustion in HCCI engines. The output from various microphones and a knock sensor on an HCCI engine are measured at light and high loads. The combustion timing data obtained from the sensors are compared to the combustion timing data obtained from a piezoelectric cylinder pressure transducer. One of these sensors is selected and used for closed-loop control of the combustion timing in a single cylinder HCCI engine.


Sign in / Sign up

Export Citation Format

Share Document