Numerical Computation of Differential-Algebraic Equations for the Approximation of Artificial Satellite Trajectories and Planetary Ephemerides

1999 ◽  
Vol 67 (3) ◽  
pp. 574-580 ◽  
Author(s):  
B. Fox ◽  
L. S. Jennings ◽  
A. Y. Zomaya

The principle of virtual work and Lagrange’s equations of motion are used to construct a system of differential equations for constrained spatial multibody system modeling. The differential equations are augmented with algebraic constraints representing the system being modeled. The resulting system is a high index differential-algebraic equation (DAE) which is cast as an ordinary differential equation (ODE) by differentiating the constraint equations twice. The initial conditions are the heliocentric rectangular equatorial generalized coordinates and their first time derivatives of the planets of the solar system and an artificial satellite. The ODE is computed using the integration subroutine LSODAR to generate the body generalized coordinates and time derivatives and hence produce the planetary ephemerides and satellite trajectories for a time interval. Computer simulation and graphical output indicate the satellite and planetary positions and the latter may be compared with those provided in the Astronomical Almanac. Constraint compliance is investigated to establish the accuracy of the computation. [S0021-8936(00)03403-6]

2012 ◽  
Vol 12 (04) ◽  
pp. 1250002 ◽  
Author(s):  
NGUYEN DINH CONG ◽  
NGUYEN THI THE

We introduce a concept of Lyapunov exponents and Lyapunov spectrum of a stochastic differential algebraic equation (SDAE) of index-1. The Lyapunov exponents are defined samplewise via the induced two-parameter stochastic flow generated by inherent regular stochastic differential equations. We prove that Lyapunov exponents are nonrandom.


Author(s):  
Sambit Das ◽  
Anindya Chatterjee

Fractional order integrodifferential equations cannot be directly solved like ordinary differential equations. Numerical methods for such equations have additional algorithmic complexities. We present a particularly simple recipe for solving such equations using a Galerkin scheme developed in prior work. In particular, matrices needed for that method have here been precisely evaluated in closed form using special functions, and a small Matlab program is provided for the same. For equations where the highest order of the derivative is fractional, differential algebraic equations arise; however, it is demonstrated that there is a simple regularization scheme that works for these systems, such that accurate solutions can be easily obtained using standard solvers for stiff differential equations. Finally, the role of nonzero initial conditions is discussed in the context of the present approximation method.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
A. I. Ismail

This article is concerned about the planed rigid body pendulum motion suspended with a spring which is suspended to move on a vertical plane moving uniformly about a horizontal X-axis. This model depends on a system containing three generalized coordinates. The three nonlinear differential equations of motion of the second order are obtained to the elastic string length and the oscillation angles φ 1 and φ 2 which represent the freedom degrees for the pendulum motions. It is assumed that the body moves in a rotating vertical plane uniformly with an arbitrary angular velocity ω . The relative periodic motions of this model are considered. The governing equations of motion are obtained using Lagrange’s equations and represent a nonlinear system of second-order differential equations that can be solved in terms of generalized coordinates. The numerical solutions are investigated using the approximated fourth-order Runge–Kutta method through programming packages. These solutions are represented graphically to describe and discuss the behavior of the body at any instant for different values of the different physical parameters of the body. The obtained results have been discussed and compared with some previously published works. Some concluding remarks have been presented at the end of this work. The value of this study comes from its wide applications in both civil and military life. The main findings and objectives of the current study are obtaining periodic solutions for the problem and satisfying their accuracy and stabilities through the numerical procedure.


Author(s):  
Ahmed A. Shabana ◽  
Ahmed K. Aboubakr ◽  
Lifen Ding

In this investigation, a new three-dimensional nonlinear train car coupler model that takes into account the geometric nonlinearity due to the coupler and car body displacements is developed. The proposed nonlinear coupler model allows for arbitrary three-dimensional motion of the car bodies and captures kinematic degrees of freedom that are not captured using existing simpler models. The coupler kinematic equations are expressed in terms of the car body coordinates, as well as the relative coordinates of the coupler with respect to the car body. The virtual work is used to obtain expressions for the generalized forces associated with the car body and coupler coordinates. By assuming the inertia of the coupler components negligible compared to the inertia of the car body, the system coordinates are partitioned into two distinct sets: inertial and noninertial coordinates. The inertial coordinates that describe the car motion have inertia forces associated with them. The noninertial coupler coordinates; on the other hand, describe the coupler kinematics and have no inertia forces associated with them. The use of the principle of virtual work leads to a coupled system of differential and algebraic equations expressed in terms of the inertial and noninertial coordinates. The differential equations, which depend on the coupler noninertial coordinates, govern the motion of the train cars; whereas the algebraic force equations are the result of the quasi-static equilibrium conditions of the massless coupler components. Given the inertial coordinates and velocities, the quasi-static coupler algebraic force equations are solved iteratively for the noninertial coordinates using a Newton–Raphson algorithm. This approach leads to significant reduction in the numbers of state equations, system inertial coordinates, and constraint equations; and allows avoiding a system of stiff differential equations that can arise because of the relatively small coupler mass. The use of the concept of the noninertial coordinates and the resulting differential/algebraic equations obtained in this study is demonstrated using the knuckle coupler, which is widely used in North America. Numerical results of simple train models are presented in order to demonstrate the use of the formulation developed in this paper.


1999 ◽  
Vol 123 (2) ◽  
pp. 272-281 ◽  
Author(s):  
B. Fox ◽  
L. S. Jennings ◽  
A. Y. Zomaya

The well known Euler-Lagrange equations of motion for constrained variational problems are derived using the principle of virtual work. These equations are used in the modelling of multibody systems and result in differential-algebraic equations of high index. Here they concern an N-link pendulum, a heavy aircraft towing truck and a heavy off-highway track vehicle. The differential-algebraic equation is cast as an ordinary differential equation through differentiation of the constraint equations. The resulting system is computed using the integration routine LSODAR, the Euler and fourth order Runge-Kutta methods. The difficulty to integrate this system is revealed to be the result of many highly oscillatory forces of large magnitude acting on many bodies simultaneously. Constraint compliance is analyzed for the three different integration methods and the drift of the constraint equations for the three different systems is shown to be influenced by nonlinear contact forces.


1980 ◽  
Vol 194 (1) ◽  
pp. 239-248 ◽  
Author(s):  
N. C. Markatos ◽  
M. R. Malin ◽  
D. G. Tatchell

This paper describes a general solution method for three-dimensional, steady, turbulent flows around long, smoothly-shaped bodies, of arbitrary and varying cross-sectional shape. The particular example considered here concerns the flow around the hull of a ship, but the method can equally well be applied to other, similarly shaped bodies such as an aircraft fuselage, or a submarine. Moreover, the basic non-orthogonal grid method described can also be applied to internal flows in irregular shaped passages, or to the prediction of flows around bodies in ducts. The mathematical model consists of the partial differential equations for continuity and three components of momentum, along with a two-equation model of turbulence, and proper modelling of the ship's hull. The solution method utilizes a non-orthogonal coordinate system in the plane normal to the axis of the body, which has one coordinate surface coinciding with the hull surface. This coordinate system is flexible and is easily modified to enable the calculation procedure to handle bulbous ships' hulls, which are of great importance in modern ship design. The differential equations involved are solved numerically after provision of the proper boundary and initial conditions. The solution procedure is a unique one, called ‘partially-parabolic’, as first used by Pratap and Spalding (1). Solutions are presented for flow around ships' hulls, which demonstrate the physical realism of the achieved results and the potential of the present method.


Author(s):  
Mohammed Ibrahim ◽  
Alaa Zaky ◽  
Mohsen Afouna ◽  
Ahmed Samy

Carrier erythrocytes are emerging as one of the most promising biological drug delivery systems investigated in recent decades. Beside its biocompatibility, biodegradability and ability to circulate throughout the body, it has the ability to perform extended release system of the drug for a long period. The ultimate goal of this study is to introduce a new carrier system for Salbutamol, maintaining suitable blood levels for a long time, as atrial to resolve the problems of nocturnal asthma medication Therefore in this work we study the effect of time, temperature as well as concentration on the loading of salbutamol in human erythrocytes to be used as systemic sustained release delivery system for this drug. After the loading process is performed the carrier erythrocytes were physically and cellulary characterized. Also, the in vitro release of salbutamol from carrier erythrocytes was studied over time interval. From the results it was found that, human erythrocytes have been successfully loaded with salbutamol using endocytosis method either at 25 Co or at 37 Co . The highest loaded amount was 3.5 mg/ml and 6.5 mg/ml respectively. Moreover, the percent of cells recovery is 90.7± 1.64%. Hematological parameters and osmotic fragility behavior of salbutamol loaded erythrocytes were similar that of native erythrocytes. Scanning electron microscopy demonstrated that the salbutamol loaded cells has moderate change in the morphology. Salbutamol releasing from carrier cell was 43% after 36 hours in phosphate buffer saline. The releasing pattern of the drug from loaded erythrocytes showed initial burst release in the first hour followed by a very slow release, obeying zero order kinetics. It concluded that salbutamol is successfully entrapped into erythrocytes with acceptable loading parameters and moderate morphological changes, this suggesting that erythrocytes can be used as prolonged release carrier for salbutamol.


2020 ◽  
Vol 86 (7) ◽  
pp. 45-54
Author(s):  
A. M. Lepikhin ◽  
N. A. Makhutov ◽  
Yu. I. Shokin

The probabilistic aspects of multiscale modeling of the fracture of heterogeneous structures are considered. An approach combining homogenization methods with phenomenological and numerical models of fracture mechanics is proposed to solve the problems of assessing the probabilities of destruction of structurally heterogeneous materials. A model of a generalized heterogeneous structure consisting of heterogeneous materials and regions of different scales containing cracks and crack-like defects is formulated. Linking of scales is carried out using kinematic conditions and multiscale principle of virtual forces. The probability of destruction is formulated as the conditional probability of successive nested fracture events of different scales. Cracks and crack-like defects are considered the main sources of fracture. The distribution of defects is represented in the form of Poisson ensembles. Critical stresses at the tops of cracks are described by the Weibull model. Analytical expressions for the fracture probabilities of multiscale heterogeneous structures with multilevel limit states are obtained. An approach based on a modified Monte Carlo method of statistical modeling is proposed to assess the fracture probabilities taking into account the real morphology of heterogeneous structures. A feature of the proposed method is the use of a three-level fracture scheme with numerical solution of the problems at the micro, meso and macro scales. The main variables are generalized forces of the crack propagation and crack growth resistance. Crack sizes are considered generalized coordinates. To reduce the dimensionality, the problem of fracture mechanics is reformulated into the problem of stability of a heterogeneous structure under load with variations of generalized coordinates and analysis of the virtual work of generalized forces. Expressions for estimating the fracture probabilities using a modified Monte Carlo method for multiscale heterogeneous structures are obtained. The prospects of using the developed approaches to assess the fracture probabilities and address the problems of risk analysis of heterogeneous structures are shown.


2012 ◽  
Vol 9 (1) ◽  
pp. 59-64
Author(s):  
R.K. Gazizov ◽  
A.A. Kasatkin ◽  
S.Yu. Lukashchuk

In the paper some features of applying Lie group analysis methods to fractional differential equations are considered. The problem related to point change of variables in the fractional differentiation operator is discussed and some general form of transformation that conserves the form of Riemann-Liouville fractional operator is obtained. The prolongation formula for extending an infinitesimal operator of a group to fractional derivative with respect to arbitrary function is presented. Provided simple example illustrates the necessity of considering both local and non-local symmetries for fractional differential equations in particular cases including the initial conditions. The equivalence transformation forms for some fractional differential equations are discussed and results of group classification of the wave-diffusion equation are presented. Some examples of constructing particular exact solutions of fractional transport equation are given, based on the Lie group methods and the method of invariant subspaces.


2020 ◽  
Vol 7 (1) ◽  
pp. 48-55 ◽  
Author(s):  
Bolat Duissenbekov ◽  
Abduhalyk Tokmuratov ◽  
Nurlan Zhangabay ◽  
Zhenis Orazbayev ◽  
Baisbay Yerimbetov ◽  
...  

AbstractThe study solves a system of finite difference equations for flexible shallow concrete shells while taking into account the nonlinear deformations. All stiffness properties of the shell are taken as variables, i.e., stiffness surface and through-thickness stiffness. Differential equations under consideration were evaluated in the form of algebraic equations with the finite element method. For a reinforced shell, a system of 98 equations on a 8×8 grid was established, which was next solved with the approximation method from the nonlinear plasticity theory. A test case involved computing a 1×1 shallow shell taking into account the nonlinear properties of concrete. With nonlinear equations for the concrete creep taken as constitutive, equations for the quasi-static shell motion under constant load were derived. The resultant equations were written in a differential form and the problem of solving these differential equations was then reduced to the solving of the Cauchy problem. The numerical solution to this problem allows describing the stress-strain state of the shell at each point of the shell grid within a specified time interval.


Sign in / Sign up

Export Citation Format

Share Document