Experimental Evaluation of a High-Gain Control for Compressor Surge Suppression

2002 ◽  
Vol 124 (1) ◽  
pp. 27-35 ◽  
Author(s):  
Franco Blanchini ◽  
Pietro Giannattasio ◽  
Diego Micheli ◽  
Piero Pinamonti

The present paper considers the suppression of surge instability in compression systems by means of active control strategies based on a high-gain approach. A proper sensor-actuator pair and a proportional controller are selected that, in theory, guarantee system stabilization in any operating condition for a sufficiently high value of the gain. Furthermore, an adaptive control strategy is introduced that allows the system automatically to detect a suitable value of the gain needed for stabilization, without requiring any knowledge of the compressor and plant characteristics. The control device is employed to suppress surge in an industrial compression system based on a four-stage centrifugal blower. An extensive experimental investigation has been performed in order to test the control effectiveness in various operating points on the stalled branch of the compressor characteristic and at different compressor speeds. On one hand, the experimental results confirm the good performance of the proposed control strategy; on the other, they show some inherent difficulties in stabilizing the system at high compressor speeds due to the measurement disturbances and to the limited operation speed of the actuator.

Author(s):  
Franco Blanchini ◽  
Pietro Giannattasio ◽  
Diego Micheli ◽  
Piero Pinamonti

The present paper considers the suppression of surge instability in compression systems by means of active control strategies based on a high-gain approach. A proper sensor-actuator pair and a proportional controller are selected which, in theory, guarantee system stabilization in any operating condition for a sufficiently high value of the gain. Furthermore, an adaptive control strategy is introduced which allows the system to automatically detect a suitable value of the gain needed for stabilization, without requiring any knowledge of the compressor and plant characteristics. The control device is employed to suppress surge in an industrial compression system based on a four-stage centrifugal blower. An extensive experimental investigation has been performed in order to test the control effectiveness in various operating points on the stalled branch of the compressor characteristic and at different compressor speeds. On one hand the experimental results confirm the good performance of the proposed control strategy, on the other they show some inherent difficulties in stabilizing the system at high compressor speeds due to the measurement disturbances and to the limited operation speed of the actuator.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Huyen T. Dinh ◽  
Tuan-Duong Trinh ◽  
Van-Nhu Tran

Abstract A continuous saturated controller using smooth saturation functions is established for MacPherson active suspension system which includes nonlinear uncertainties, unknown road excitations, and bounded disturbances. The developed controller exploits the properties of the hyperbolic functions to guarantee saturation limits are not exceeded, while stability analysis procedures of the robust integral of the sign of the error (RISE) control technique utilize the advantages of high gain control strategies in compensating for unknown uncertainties. The saturated controller guarantees asymptotic regulation of the sprung mass acceleration to improve the ride comfort despite model uncertainties and additive disturbances in the dynamics. Simulation results demonstrate the improvement in the ride comfort while tire deflection and the suspension deflection are within admissible range in comparison with three other suspensions.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Xuehui Gao

An adaptive high-order neural network (HONN) control strategy is proposed for a hysteresis motor driving servo system with the Bouc-Wen model. To simplify control design, the model is rewritten as a canonical state space form firstly through coordinate transformation. Then, a high-gain state observer (HGSO) is proposed to estimate the unknown transformed state. Afterward, a filter for the tracking errors is adopted which converts the vector error e into a scalar error s. Finally, an adaptive HONN controller is presented, and a Lyapunov function candidate guarantees that all the closed-loop signals are uniformly ultimately bounded (UUB). Simulations verified the effectiveness of the proposed neural network adaptive control strategy for the hysteresis servo motor system.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
A. Cavallo ◽  
G. Canciello ◽  
B. Guida

In this paper an issue related to electric energy management on board an aircraft is considered. A battery pack is connected to a high-voltage bus through a controlled Battery Charge/Discharge Unit (BCDU) that makes the overall behaviour of the battery “intelligent.” Specifically, when the aeronautic generator feeding the high-voltage bus has enough energy the battery is kept under charge, while if more loads are connected to the bus, so that the overload capacity of the generator is exceeded, the battery “helps” the generator by releasing its stored energy. The core of the application is a robust, supervised control strategy for the BCDU that automatically reverts the flow of power in the battery, when needed. Robustness is guaranteed by a low-level high gain control strategy. Switching from full-charge mode (i.e., when the battery absorbs power from the generator) to generator mode (i.e., when the battery pumps energy on the high-voltage bus) is imposed by a high-level supervisor. Different from previous approaches, mathematical proofs of stability are given for the controlled system. A switching implementation using a finite-time convergent controller is also proposed. The effectiveness of the proposed strategy is shown by detailed simulations in Matlab/Stateflow/SimPowerSystem.


2007 ◽  
Vol 2 (2) ◽  
pp. 349-367 ◽  
Author(s):  
V. K. Malinovskii

ABSTRACTThis paper is intended to illustrate the adaptive control approach in insurance. A zone-adaptive control strategy harmonising the requirements of principles of solvency and equity is considered in the simplistic framework of a diffusion multiperiodic risk model. Other works by the author set similar adaptive control strategies in a more realistic Poisson-exponential multiperiodic risk model. There is much scope for further generalisations.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3216 ◽  
Author(s):  
Alberto Cavallo ◽  
Giacomo Canciello ◽  
Beniamino Guida ◽  
Ponggorn Kulsangcharoen ◽  
Seang Yeoh ◽  
...  

In this paper, an intelligent control strategy for DC/DC converters is proposed. The converter connects two DC busses, a high-voltage and a low-voltage bus. The control scheme is composed by a two-layer architecture, a low-level control based on the concept of sliding manifold, and high gain control, and a high-level control used to guarantee the achievement of various objectives. The proposed control strategies are based on solid mathematical arguments, with stability proofs for the non-linear case, and decision trees for parameter selection. The paper results are analyzed and discussed by using simulation at different detail levels in MATLAB/Stateflow/PowerSystem, and validated by experimental results, also considering MIL standard performance indices.


1998 ◽  
Vol 1634 (1) ◽  
pp. 123-129 ◽  
Author(s):  
Eil Kwon ◽  
Yorgos J. Stephanedes

The current status of the Minnesota intersection laboratory and a new adaptive control strategy developed using the laboratory environment are presented in this paper. The laboratory is equipped with a machine-vision detection system with 6 cameras that are collecting detailed traffic data from a total of 110 virtual detectors. The new control method is based on the link-congestion index that quantifies the link-wide level of congestion, using the point measurements from traffic sensors (e.g., machine-vision detectors or conventional loops). Further, using the data collected from the laboratory, a new microscopic simulator was also developed to meet the specific needs for the laboratory environment. The current version of the simulator adopts a modified cellular automata approach with the simplified car-following model, which was developed and tested in this work. The evaluation results with the simulator indicated significant performance improvements of the new strategy over the pretimed and the current actuated-control strategies being operated in Minneapolis. Currently the control method is being refined for field evaluation at the intersection laboratory.


2022 ◽  
Vol 10 (1) ◽  
pp. 83
Author(s):  
Biao Li ◽  
Xianku Zhang ◽  
Jun Wang ◽  
Ning Chen

The gyrostabilizer produces the anti-roll effect through the precession output moment generated by a high-speed rotating flywheel. As a floating-base multi-body system composed of ship and gyrostabilizer, the recent research that has only focused on the control strategies or multi-body dynamics is obviously not comprehensive. This study presents an adaptive controller based on the variable gain control strategy for a marine gyrostabilizer installed on a port salvage tug. The variable gain control strategy controlled the flywheel precession output moment of the gyrostabilizer and thereby of the precession process, to reduce the ship roll motion effectively. Furthermore, a full-system hydrodynamic model of a gyrostabilizer-ship-wave based on three-dimensional numerical wave flume technology was innovatively established to evaluate its anti-roll performance under irregular wave conditions. The simulation results show that, for the sea state considered, the increase of spin rate of gyrostabilizer flywheel improved the anti-roll effect significantly. The average anti-roll rate of the gyrostabilizer decreased with the increase of significant wave height, wave period and wave encounter angle.


2021 ◽  
Vol 257 ◽  
pp. 02041
Author(s):  
Guo Jianyi ◽  
Fan Youping

As a large number of converters composed of power electronic devices are connected to the grid, power system has gradually decreased stability. How to increase dynamic response of the converter has become one of the research hotspots. Virtual synchronous generator technology (VSG) can endow the converter with moment of inertia and damping characteristics, thereby enhancing dynamic response, but the traditional VSG technology cannot achieve the optimal control effect. To solve this problem, an adaptive control strategy is proposed, which takes logical combination of system angular velocity and frequency change as the real-time change condition, with exponential function as the change expression. Finally, this paper uses MATLAB / Simulink to compare the method in this paper with several existing typical control strategies.


Sign in / Sign up

Export Citation Format

Share Document