Saturated RISE Feedback Control for Uncertain Nonlinear MacPherson Active Suspension System to Improve Ride Comfort

2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Huyen T. Dinh ◽  
Tuan-Duong Trinh ◽  
Van-Nhu Tran

Abstract A continuous saturated controller using smooth saturation functions is established for MacPherson active suspension system which includes nonlinear uncertainties, unknown road excitations, and bounded disturbances. The developed controller exploits the properties of the hyperbolic functions to guarantee saturation limits are not exceeded, while stability analysis procedures of the robust integral of the sign of the error (RISE) control technique utilize the advantages of high gain control strategies in compensating for unknown uncertainties. The saturated controller guarantees asymptotic regulation of the sprung mass acceleration to improve the ride comfort despite model uncertainties and additive disturbances in the dynamics. Simulation results demonstrate the improvement in the ride comfort while tire deflection and the suspension deflection are within admissible range in comparison with three other suspensions.

2013 ◽  
Vol 380-384 ◽  
pp. 528-531 ◽  
Author(s):  
Xiao Feng Liu ◽  
Xin Hua Xie

Relative to the passive suspension, automotive active suspension car driving more ride comfort and stability, has a vital role to further improve the performance of the vehicle. For such a typically complex active suspension system research, the key issue is the selection of control strategies. The problems in the currently active suspension control strategy, the principle of a simple, effective, this paper, a single neuron PID control strategy used in the automotive active suspension system. The results show that compared with other control strategies, single neuron PID control strategy is reliable, has more advantages.


2017 ◽  
Vol 67 (3) ◽  
pp. 269
Author(s):  
Mukund W. Trikande ◽  
Vinit V. Jagirdar ◽  
Vasudevan Rajamohan ◽  
P.R. Sampat Rao

<p>The objective of the study is to evaluate the performance of various semi-active suspension control strategies for 8x8 multi-axle armoured vehicles in terms of comparative analysis of ride quality and mobility parameters during negotiation of typical military obstacles. Since the cost, complexity and time precludes realisation of actual system, co-simulation technique has been effectively implemented for this investigation. Co-simulation combines advanced virtual prototyping and control technology which offers a novel approach to investigate the dynamics of such complex system. The simulations for the integrated control system along with multi body model of the vehicle are carried out for the control strategies, viz. continuous sky hook control, cascade loop control and cascade loop with ride control and compared with passive suspension system. The vehicle with 8x8 configuration is run on the real world obstacle profiles, viz. step, trench, trapezoidal bump and corrugated road and the effect of control strategies on ride comfort, wheel displacement and ground reaction is presented. It is observed that cascade loop with ride control in semi-active mode offers better vehicle ride comfort while crossing the said obstacles. The improved performance parameters are achieved through stabilisation of heave, pitch and roll motions of the vehicle through outer loop and isolation of vehicle level uneven disturbances through the fuzzy logic controller employed in inner loop.</p>


2017 ◽  
Vol 24 (13) ◽  
pp. 2732-2748 ◽  
Author(s):  
Yechen Qin ◽  
Changle Xiang ◽  
Zhenfeng Wang ◽  
Mingming Dong

Vehicle performance is largely affected by the properties of the suspension system, where semi-active suspension has been widely used in mass production of vehicles owing to its characteristics such as internal stability and low energy consumption. To solve the contradiction between ride comfort and road handling, road estimation based semi-active suspension has received considerable attention in recent years. In order to provide accurate estimation for advanced control strategies applications, this paper aims to develop a new method that can provide precise road class estimation based on measurable suspension system response (i.e. sprung mass acceleration, unsprung mass acceleration and rattle space). The response signal is first decomposed using wavelet packet analysis, and features in both time and frequency domains are subsequently extracted. Then, minimum redundancy maximum relevance (mRMR) is utilized to select superior features. Finally, a probabilistic neural network (PNN) classifier is applied to determine road classification output. The most representative semi-active control strategy, i.e. skyhook control, is used to validate this method, and simulation results with varying conditions including different control parameters and sprung mass are compared. The results show that unsprung mass acceleration is most suitable for road classification, and more robust to varying conditions in comparison to other responses.


2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Yechen Qin ◽  
Feng Zhao ◽  
Zhenfeng Wang ◽  
Liang Gu ◽  
Mingming Dong

This paper presents a comprehensive comparison and analysis for the effect of time delay on the five most representative semi-active suspension control strategies, and refers to four unsolved problems related to semi-active suspension performance and delay mechanism that existed. Dynamic characteristics of a commercially available continuous damping control (CDC) damper were first studied, and a material test system (MTS) load frame was used to depict the velocity-force map for a CDC damper. Both inverse and boundary models were developed to determine dynamic characteristics of the damper. In addition, in order for an improper damper delay of the form t+τ to be corrected, a delay mechanism of controllable damper was discussed in detail. Numerical simulation for five control strategies, i.e., modified skyhook control SC, hybrid control (HC), COC, model reference sliding mode control (MRSMC), and integrated error neuro control (IENC), with three different time delays: 5 ms, 10 ms, and 15 ms was performed. Simulation results displayed that by changing control weights/variables, performance of all five control strategies varied from being ride comfort oriented to being road handling oriented. Furthermore, increase in delay time resulted in deterioration of both ride comfort and road handling. Specifically, ride comfort was affected more than road handling. The answers to all four questions were finally provided according to simulation results.


Author(s):  
Gurubasavaraju Tharehalli mata ◽  
Vijay Mokenapalli ◽  
Hemanth Krishna

This study assesses the dynamic performance of the semi-active quarter car vehicle under random road conditions through a new approach. The monotube MR damper is modelled using non-parametric method based on the dynamic characteristics obtained from the experiments. This model is used as the variable damper in a semi-active suspension. In order to control the vibration caused under random road excitation, an optimal sliding mode controller (SMC) is utilised. Particle swarm optimisation (PSO) is coupled to identify the parameters of the SMC. Three optimal criteria are used for determining the best sliding mode controller parameters which are later used in estimating the ride comfort and road handling of a semi-active suspension system. A comparison between the SMC, Skyhook, Ground hook and PID controller suggests that the optimal parameters with SMC have better controllability than the PID controller. SMC has also provided better controllability than the PID controller at higher road roughness.


2015 ◽  
Vol 1115 ◽  
pp. 440-445 ◽  
Author(s):  
Musa Mohammed Bello ◽  
Amir Akramin Shafie ◽  
Raisuddin Khan

The main purpose of vehicle suspension system is to isolate the vehicle main body from any road geometrical irregularity in order to improve the passengers ride comfort and to maintain good handling stability. The present work aim at designing a control system for an active suspension system to be applied in today’s automotive industries. The design implementation involves construction of a state space model for quarter car with two degree of freedom and a development of full state-feedback controller. The performance of the active suspension system was assessed by comparing it response with that of the passive suspension system. Simulation using Matlab/Simulink environment shows that, even at resonant frequency the active suspension system produces a good dynamic response and a better ride comfort when compared to the passive suspension system.


Author(s):  
Sharifah Munawwarah Syed Mohd Putra ◽  
Fitri Yakub ◽  
Mohamed Sukri Mat Ali ◽  
Noor Fawazi Mohd Noor Rudin ◽  
Zainudin A. Rasid ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document