Residual Stress Measurement in a Ceramic-Metallic Graded Material

2002 ◽  
Vol 124 (2) ◽  
pp. 185-191 ◽  
Author(s):  
Michael R. Hill ◽  
Wei-Yan Lin

This paper presents experimental measurements of the through-thickness distribution of residual stress in a ceramic-metallic functionally graded material (FGM). It further presents an error analysis and optimization of the residual stress measurement technique. Measurements are made in a seven-layered plate with a base of commercially pure titanium and successive layers containing an increasing proportion of titanium-boride, reaching 85% titanium-boride in the final layer. The compliance method is employed to determine residual stress, where a slot is introduced using wire electric-discharge machining and strain release is measured as a function of increasing slot depth. Strain release measurements are used with a back-calculation scheme, based on finite element simulation, to provide residual stresses in the FGM. The analysis is complicated by the variation of material properties in the FGM, but tractable due to the flexibility of the finite element method. The Monte Carlo approach is used for error analysis and a method is described for optimization of the functional form assumed for the residual stresses. The magnitude and variation of the resulting residual stress distributions and several aspects of the error analyses are discussed.

Author(s):  
Levente Tatár ◽  
Gyula Török ◽  
David J. Smith ◽  
Son Do ◽  
Carsten Ohms ◽  
...  

As part of the STYLE EU FP7 project a modified 1:5 scale replica of a VVER-440 type reactor pressure vessel inlet nozzle was manufactured. The nozzle included a dissimilar metal weld of the type found in full-scale nozzles. This scale model was developed to permit accurate measurements to be made and detailed finite element (FE) models to be developed without recourse to using a full scale mock-up. It was also found that a full-scale mock-up would not permit the application of certain residual stress measurement methods. Temperatures and displacements were recorded during welding of the dissimilar metals, with measurements used to guide simulation of the welding process using finite element models. Through thickness residual stress profiles were measured using a comprehensive range of different techniques, such as deep hole drilling, neutron diffraction, magnetic Barkhausen noise. Usage of contour method had been planned too, but it but could not be accomplished in due time. The measured residual stresses obtained by the different methods are presented and compared. Measured residual stresses, temperatures and displacements were then used to validate the results derived from the FE model.


Author(s):  
Steve K. Bate ◽  
Chris Watson

A new long-term research programme has been launched in the UK. This involves Rolls-Royce plc and Serco Assurance, supported by UK industry and academia. A significant part of this programme is aimed at progressing the understanding of weld residual stresses and the implementation of finite element simulation and residual stress measurement for assessing the structural integrity of engineering structures and components. The work includes: (1) Finite element modelling to investigate heat source representation, material behaviour and 3D v 2D effects. (2) Design and manufacture of mock-ups for supporting validation. (3) Residual stress measurement. (4) Weld design. (5) Residual stress profiles. (6) Material testing. (7) Development of a procedure for residual stress modelling. The work is being undertaken by a combination of finite element analyses and residual stress measurement using a variety of techniques. This paper presents an overview of the research work being undertaken and provides examples of the outcome of some of the studies obtained to-date.


2011 ◽  
Vol 70 ◽  
pp. 291-296 ◽  
Author(s):  
Sayeed Hossain ◽  
Ed J. Kingston ◽  
Christopher E. Truman ◽  
David John Smith

The main objective of the present study is to validate a simple over-coring deep-hole drilling (oDHD) residual stress measurement technique by utilising finite element simulations of the technique. A number of three dimensional (3D) finite element analyses (FEA) were carried out to explore the influence of material removal and the cutting sequence during the deep-hole drilling (DHD) residual stress measurement process on the initial residual stress field. Two models were considered in the study. First, the residual stress field predicted in a rapid spray water quenched solid cylinder was used as the initial stress field for the DHD FE model. The DHD reconstructed residual stresses were compared with the initial FE predicted stresses. Different cutting sequences and different dimensions were systematically simulated before arriving at an optimum solution for the oDHD technique. The oDHD technique significantly improved the spatial resolution and was applied in a second model consisting of a 40mm thick butt-welded pipe. The DHD reconstructed residual stresses compared very well with the initial FE predicted weld residual stress thereby validating the oDHD technique.


Author(s):  
S. K. Bate ◽  
P. Hurrell ◽  
J. A. Francis ◽  
M. Turski

A long-term UK research programme on residual stresses was launched in 2004. It involves Rolls-Royce plc and Serco Assurance, supported by UK industry and academia. The programme is aimed at progressing the understanding of weld residual stresses and the implementation of finite element simulation and residual stress measurement for assessing the integrity of engineering structures. Following on from this, the intention is then to develop improved guidance on residual stress modelling techniques and then to provide methods and analysis tools for design in order to control and minimise residual stress. The focus of the work to date has been to develop modelling guidelines which can be used by a finite element analyst to predict the residual stresses in austenitic welded components. These guidelines are now drafted and will be incorporated into the next issue of the British Energy R6 defect assessment procedure following peer review. The guidelines have been developed based on the experience that has been attained using various modelling techniques. To support this development, a series of welded mock-ups have been manufactured. The residual stresses in these welds have been measured using various techniques (diffraction and strain relaxation). These measurements are being used to validate the predicted stresses. It is only by corroborating each other that the resulting residual stresses can be confidently used for assessment. Mock-ups are also being used to develop material models for ferritic steel which undergo phase transformations, and to investigate how various weld parameters affect the magnitude and distribution of residual stress. Similarly, mock-ups have been manufactured to investigate the effect of start-stops on residual stresses. The programme is also supported by experimental testing to develop physical and mechanical properties which are required for analysis, i.e. up to melting temperature. Both conventional and miniaturised testing has been used to measure properties in ferritic and austenitic steels. A task has also been undertaken to develop a methodology for providing upper bound residual stress profiles which can be used as an initial estimate of stress for use in structural assessment.


Author(s):  
S. K. Bate ◽  
A. P. Warren ◽  
C. T. Watson ◽  
P. Hurrell ◽  
J. A. Francis

A long-term UK research programme on residual stresses was launched in 2004. It involves Rolls-Royce plc and Serco Assurance, and is supported by UK industry and academia. The programme is aimed at progressing the understanding of weld residual stresses and the implementation of finite element simulation and residual stress measurement for assessing the integrity of engineering structures. Following on from this, the intention is then to develop improved guidance on residual stress modelling techniques. In the first two years finite element activities have addressed heat source representation, simplified modelling (e.g. 2D v 3D, bead lumping), material hardening models, high temperature behaviour and phase transformations. It is recognized that simplifying assumptions have to be made in order to reduce the computational run-time and modelling complexity, especially for multi-pass welds. The effects of these assumptions on the determined stresses have been considered by carrying out finite element analyses of welded mock-ups. The welded mock-ups have been developed to provide measured residual stress data which are necessary to validate the modelling techniques that have been developed. These activities have been used to support the development of guidelines on the use finite element analysis to predict residual stresses in welded components. These guidelines will be incorporated in the next issue of the British Energy R6 defect assessment procedure.


Author(s):  
Avik Samanta ◽  
Mahesh Teli ◽  
Ramesh Singh

Laser-assisted mechanical micromachining offers the ability to machine difficult-to-cut materials, like superalloys and ceramics, more efficiently and economically by laser-induced localized thermal softening prior to cutting. Laser-assisted mechanical micromachining is a micromachining process with localized laser heating which could affect the cutting forces and the machined surface integrity. The residual stresses obtained in the laser-assisted mechanical micromachining process depend on both mechanical loading and the laser heating. This article focuses on the experimental process characterization and prediction of the cutting forces and the residual stresses in a laser-assisted mechanical micromachining–based orthogonal machining of Inconel 625. The results show that the laser assistance reduces the mean cutting forces by ∼25% and enhances the normal compressive residual stress at the surface by ∼50%. Since microscale residual stress measurement is very time-intensive, a coupled-field thermo-mechanical finite element model of laser-assisted mechanical micromachining has been developed to predict the temperature, cutting forces and the residual stresses. The cutting forces and residual stresses’ predictions are in good agreement with the measured values during machining. In addition, parametric simulations have been carried out for laser power, cutting speed, cutting edge radius, rake angle, laser location and laser beam diameter to study their effect on cutting forces and surface residual stresses.


Author(s):  
Yashar Javadi ◽  
Mohammadreza Hadizadeh Raeisi ◽  
Hamed Salimi Pirzaman ◽  
Mehdi Ahmadi Najafabadi

When a material is under mechanical load, the stresses change the velocity of acoustic waves because of acoustoelastic effect. This property can be employed for stress measurement in the material itself when the stress concerns the surface of the material, or in the bulk material. This technique involves with critically refracted longitudinal waves that propagate parallel to the surface, i. e. LCR waves. This paper presents a three dimensional thermo-mechanical analysis to evaluate welding residual stresses in plate-plate joint of AISI stainless steel 304L. After finite element simulation, the residual stresses were evaluated by LCR ultrasonic waves. This paper introduces a combination of “Finite Element Welding Simulation” and “Ultrasonic Stress Measurement using the LCR Wave” which is called as “FELcr”. The capabilities of FELCR in residual stress measurement are confirmed here. It has been shown that predicted residual stress from three dimensional FE analyses is in reasonable agreement with measured residual stress from LCR method.


2021 ◽  
Vol 1199 (1) ◽  
pp. 012060
Author(s):  
M Geľatko ◽  
M Hatala ◽  
R Vandžura ◽  
F Botko

Abstract The article deals with the state-of-the-art in the field of Longitudinal critically refracted (LCR) ultrasonic wave, for non-destructive material evaluation. It checks its capability for residual stress identification, and reviews positives and negatives related to its use. Obtained information within the article, are used for the understanding of essence of method and for the evaluation of its use in the engineering practice. The article can be the source of information about the LCR wave measurement technology, which is the part of the complex ultrasonic testing method. For the frequency of using this technology for surface residual stress measurement, it is appropriate to have this information in one whole, which are gathered of the outputs of researches by various authors. The paper is divided in few sections and sub-sections. In the first section, information about LCR wave technique and factors correlated with this method, are provided. The next section writes about residual stresses and the importance of their identification. Next, the principal of residual stresses measurement and basic structure of measurement device, is described. A significant part of study, describes the state so far of theoretical and practical researches within the use of this method, in the technological practice of residual stress identification in surface layers of engineering components. In the conclusion, obtained knowledges are summarised and evaluated. Related positive and negative aspects are included, with a verifying the need of future researches.


Sign in / Sign up

Export Citation Format

Share Document