Jacobian Analysis of Limited-DOF Parallel Manipulators

2002 ◽  
Vol 124 (2) ◽  
pp. 254-258 ◽  
Author(s):  
Sameer A. Joshi ◽  
Lung-Wen Tsai

This paper presents a methodology for the Jacobian analysis of limited degrees-of-freedom (DOF) parallel manipulators. A limited-DOF parallel manipulator is a spatial parallel manipulator which has less than six degrees-of-freedom. It is shown that a 6×6 Jacobian matrix, which provides information about both architecture and constraint singularities, can be derived by making use of the theory of reciprocal screws. The 3-UPU and 3-RPS parallel manipulators are used as examples to demonstrate the methodology.

Author(s):  
Richard Stamper ◽  
Lung-Wen Tsai

Abstract The dynamics of a parallel manipulator with three translational degrees of freedom are considered. Two models are developed to characterize the dynamics of the manipulator. The first is a traditional Lagrangian based model, and is presented to provide a basis of comparison for the second approach. The second model is based on a simplified Newton-Euler formulation. This method takes advantage of the kinematic structure of this type of parallel manipulator that allows the actuators to be mounted directly on the base. Accordingly, the dynamics of the manipulator is dominated by the mass of the moving platform, end-effector, and payload rather than the mass of the actuators. This paper suggests a new method to approach the dynamics of parallel manipulators that takes advantage of this characteristic. Using this method the forces that define the motion of moving platform are mapped to the actuators using the Jacobian matrix, allowing a simplified Newton-Euler approach to be applied. This second method offers the advantage of characterizing the dynamics of the manipulator nearly as well as the Lagrangian approach while being less computationally intensive. A numerical example is presented to illustrate the close agreement between the two models.


Robotica ◽  
2012 ◽  
Vol 31 (3) ◽  
pp. 381-388 ◽  
Author(s):  
Jaime Gallardo-Alvarado ◽  
Mario A. García-Murillo ◽  
Eduardo Castillo-Castaneda

SUMMARYThis study addresses the kinematics of a six-degrees-of-freedom parallel manipulator whose moving platform is a regular triangular prism. The moving and fixed platforms are connected to each other by means of two identical parallel manipulators. Simple forward kinematics and reduced singular regions are the main benefits offered by the proposed parallel manipulator. The Input–Output equations of velocity and acceleration are systematically obtained by resorting to reciprocal-screw theory. A case study, which is verified with the aid of commercially available software, is included with the purpose to exemplify the application of the method of kinematic analysis.


Robotica ◽  
1995 ◽  
Vol 13 (2) ◽  
pp. 133-140 ◽  
Author(s):  
Soumya Bhattacharya ◽  
H. Hatwal ◽  
A. Ghosh

SummaryThis paper studies the static rigidity behaviour of a parallel manipulator with legs modelled as elastic members under axial loading. Structurally, a parallel module is more rigid compared to a serial module and is expected to take heavier payloads. Therefore, a guidance for design of such parallel manipulators is needed which leads to maximum rigidity over the workspace. In the present work, the authors propose the concept of the flexibility ellipsoid for a parallel system. Various scalar measures of rigidity are formulated on the basis of the proposed ellipsoid. An algorithm, involving multiple objective nonlinear programming technique, is implemented to decide upon some important design parameters of a generalised six degrees of freedom Stewart platform type parallel manipulator. It is observed that irrespective of the other parameters, parallel manipulators with the legs pairwise joined at the top platform possess the highest rigidity. Moreover, there exists certain kinematic dimensions for which the designed parallel system is completely free from all sorts of singularity.


2016 ◽  
Vol 836 ◽  
pp. 42-47 ◽  
Author(s):  
Latifah Nurahmi ◽  
Stéphane Caro

This paper deals with the formulation of the dimensionally homogeneous extended Jacobian matrix, which is an important issue for the performance analysis of f degrees-of-freedom (f ≤6) parallel manipulators having coupled rotational and translational motions. By using the f independent coordinates to define the permitted motions and (6-f) independent coordinates to define the restricted motions of the moving platform, the 6×6 dimensionally homogeneous extended Jacobian matrix is derived for non-redundant parallel manipulators. The conditioning number of the parallel manipulators is computed to evaluate the homogeneous extended Jacobian matrix, the homogeneous actuation wrench matrix, and the homogeneous constraint wrench matrix to evaluate the performance of the parallel manipulators. By using these indices, the closeness of a pose to different singularities can be detected. An illustrative example with the 3-RPS parallel manipulator is provided to highlight the effectiveness of the approach and the proposed indices.


2011 ◽  
Vol 35 (4) ◽  
pp. 515-528 ◽  
Author(s):  
Semaan Amine ◽  
Mehdi Tale Masouleh ◽  
Stéphane Caro ◽  
Philippe Wenger ◽  
Clément Gosselin

This paper deals with the singularity analysis of four degrees of freedom parallel manipulators with identical limb structures performing Schönflies motions, namely, three independent translations and one rotation about an axis of fixed direction. The 6 × 6 Jacobian matrix of such manipulators contains two lines at infinity among its six Plücker vectors. Some points at infinity are thus introduced to formulate the superbracket of Grassmann-Cayley algebra, which corresponds to the determinant of the Jacobian matrix. By exploring this superbracket, all the singularity conditions of such manipulators can be enumerated. The study is illustrated through the singularity analysis of the 4-RUU parallel manipulator.


2015 ◽  
Vol 8 (2) ◽  
Author(s):  
Andrew Johnson ◽  
Xianwen Kong ◽  
James Ritchie

The determination of workspace is an essential step in the development of parallel manipulators. By extending the virtual-chain (VC) approach to the type synthesis of parallel manipulators, this technical brief proposes a VC approach to the workspace analysis of parallel manipulators. This method is first outlined before being illustrated by the production of a three-dimensional (3D) computer-aided-design (CAD) model of a 3-RPS parallel manipulator and evaluating it for the workspace of the manipulator. Here, R, P and S denote revolute, prismatic and spherical joints respectively. The VC represents the motion capability of moving platform of a manipulator and is shown to be very useful in the production of a graphical representation of the workspace. Using this approach, the link interferences and certain transmission indices can be easily taken into consideration in determining the workspace of a parallel manipulator.


1995 ◽  
Vol 117 (4) ◽  
pp. 658-661 ◽  
Author(s):  
H. R. Mohammadi Daniali ◽  
P. J. Zsombor-Murray ◽  
J. Angeles

Two versions of spatial double-triangular mechanisms are introduced, one with three and one with six degrees of freedom. Using dual-number quaternion algebra, a formula for the direct kinematics of these manipulators is derived. Numerical examples are included.


Author(s):  
Ronen Ben-Horin ◽  
Moshe Shoham

Abstract The construction of a new type of a six-degrees-of-freedom parallel robot is presented in this paper. Coordinated motion of three planar motors, connected to three fixed-length links, produces a six-degrees-of-freedom motion of an output link. Its extremely simple design along with much larger work volume make this high performance-to-simplicity ratio robot very attractive.


2003 ◽  
Vol 125 (2) ◽  
pp. 302-307 ◽  
Author(s):  
Marco Carricato ◽  
Vincenzo Parenti-Castelli

This article addresses parallel manipulators with fewer than six degrees of freedom, whose use may prove valuable in those applications in which a higher mobility is uncalled for. In particular, a family of 3-dof manipulators containing only revolute joints or at the most revolute and prismatic ones is studied. Design and assembly conditions sufficient to provide the travelling platform with a pure translational motion are determined and two sub-families that fulfill the imposed constraint are found: one is already known in the literature, while the other is original. The new architecture does not exhibit rotation singularities, i.e., configurations in which the platform gains rotational degrees of freedom. A geometric interpretation of the translation singularities is provided.


Author(s):  
Yanwen Li ◽  
Yueyue Zhang ◽  
Lumin Wang ◽  
Zhen Huang

This paper investigates a novel 4-DOF 3-RRUR parallel manipulator, the number and the characteristics of its degrees of freedom are determined firstly, the rational input plan and the invert and forward kinematic solutions are carried out then. The corresponding numeral example of the forward kinematics is given. This type of parallel manipulators has a symmetrical structure, less accumulated error, and can be used to construct virtual-axis machine tools. The analysis in this paper will play an important role in promoting the application of such manipulators.


Sign in / Sign up

Export Citation Format

Share Document