Bulk Temperature Development in Transient Heat Transfer Measurements Using Heater Foils

2002 ◽  
Vol 124 (5) ◽  
pp. 982-985 ◽  
Author(s):  
Jens von Wolfersdorf

The time and space development of the fluid bulk temperature in a transient heat transfer experiment for internal channel cooling investigations using heater foils is addressed. An analytical solution for uniform heat transfer coefficients is derived which shows the effect of wall heating on the bulk temperature during a transient test run. A simplified model is proposed for characterizing the bulk temperature development by introducing an upstream heat transfer parameter. With this, analytical solutions for the local wall temperature history can be derived. The presented solution can be used for data reduction of transient tests of this kind.

1999 ◽  
Vol 121 (5) ◽  
pp. 514-520 ◽  
Author(s):  
R. B. Roemer

Previous models of countercurrent blood vessel heat transfer have used one of two, different, equally valid but previously unreconciled formulations, based either on: (1) the difference between the arterial and venous vessels’ average wall temperatures, or (2) the difference between those vessels’ blood bulk fluid temperatures. This paper shows that these two formulations are only equivalent when the four, previously undefined, “convective heat transfer coefficients” that are used in the bulk temperature difference formulation (two coefficients each for the artery and vein) have very specific, problem-dependent relationships to the standard convective heat transfer coefficients. (The average wall temperature formulation uses those standard coefficients correctly.) The correct values of these bulk temperature difference formulation “convective heat transfer coefficients” are shown to be either: (1) specific functions of (a) the tissue conduction resistances, (b) the standard convective heat transfer coefficients, and (c) the independently specified bulk arterial, bulk venous and tissue temperatures, or (2) arbitrary, user defined values. Thus, they are generally not equivalent to the standard convective heat transfer coefficients that are regularly used, and must change values depending on the blood and tissue temperatures. This dependence can significantly limit the convenience and usefulness of the bulk temperature difference formulations.


Author(s):  
Makoto Shibahara ◽  
Qiusheng Liu ◽  
Katsuya Fukuda

Forced convection transient heat transfer coefficients have been measured for nitrogen gas flowing over a twisted heater due to exponentially increasing heat inputs (Q0exp(t/τ)). And then, the effect of heater configuration on transient heat transfer by a twisted heater has been investigated comparing to that of the plate heater. In the experiment, the platinum ribbon with a thickness of 0.1 mm and a width of 4.0 mm was used as a test heater. For heat transfer enhancements in single-phase flow, it was twisted at the central part of the heater with an angle of 90 degrees with respect to the upper part of the heater. The heat generation rate was exponentially increased with a function of Q0exp(t/τ). The gas flow velocity ranged from 1 to 4 m/s for the gas temperatures of 313K. The periods of heat generation rate ranged from 46 ms to 17 s. The surface temperature difference and heat flux increased exponentially as the heat generation rate increased with the exponential function. The heat transfer coefficients for twisted heater have been compared to those of the plate heater. They were 24 % higher than those of the plate one. The geometric effect (twisted effect) of heater in this study showed an enhancement on the heat transfer coefficient. It was considered that the heat transfer coefficients are affected by the change in the flow due to swirling flow on the twisted heater. Finally, the empirical correlations for quasi-steady-state heat transfer and transient one have been obtained based on the experimental data.


Author(s):  
Mark Ricklick ◽  
Stephanie Kersten ◽  
V. Krishnan ◽  
J. S. Kapat

High performance turbine airfoils are typically cooled with a combination of internal cooling channels and impingement/film cooling. In such applications, the jets impinge against a target surface, and then exit along the channel formed by the jet plate, target plate, and side walls. Local convection coefficients are the result of both the jet impact, as well as the channel flow produced from the exiting jets. Numerous studies have explored the effects of jet array and channel configurations on both target and jet plate heat transfer coefficients. However, little work has been done in examining effects on the channel side walls, which may be a major contributor to heat transfer in real world applications. This paper examines the local and averaged effects of channel height and on heat transfer coefficients, with special attention given to the channel side walls. The effects on heat transfer results due to bulk temperature variations were also investigated. High resolution local heat transfer coefficient distributions on target and side wall surfaces were measured using temperature sensitive paint and recorded via a scientific grade charge-coupled device (CCD) camera. Streamwise pressure distributions for both the target and side walls was recorded and used to explain heat transfer trends. Results are presented for average jet based Reynolds numbers between 17,000 and 45,000. All experiments were carried out on a large scale single row, 15 hole impingement channel, with X/D of 5, Y/D of 4, and Z/D of 1, 3 and 5. The results obtained from this investigation will aid in the validation of predictive tools and development of physics-based models.


Author(s):  
Makoto Shibahara ◽  
Qiusheng Liu ◽  
Katsuya Fukuda

Forced convection transient heat transfer coefficients were measured for helium gas and carbon dioxide gas flowing over a twisted heater due to exponentially increasing heat input (Q0exp(t/τ)). The twisted platinum plate with a thickness of 0.1 mm was used as test heater and heated by electric current. The heat generation rate was exponentially increased with a function of Q0exp(t/τ). The gas flow velocities ranged from 1 to 10 m/s, the gas temperatures ranged from 313 to 353 K, and the periods of heat generation rate ranged from 46 ms to 17 s. The surface temperature difference and heat flux increase exponentially as the heat generation rate increases with the exponential function. Transient heat transfer coefficients increase with increasing gas flow velocity. The geometric effect of twisted heater in this study shows an enhancement on the heat transfer coefficient. Empirical correlation for quasi-steady-state heat transfer was obtained based on the experimental data. The data for heat transfer coefficient were compared with those reported in authors’ previous paper.


2014 ◽  
Vol 960-961 ◽  
pp. 433-437 ◽  
Author(s):  
Hai Yu Meng ◽  
Shu Zhong Wang ◽  
Lu Zhou ◽  
Zhi Qiang Wu ◽  
Jun Zhao ◽  
...  

The submerged combustion vaporizer (SCV) is a new kind of vaporizer for liquefied natural gas (LNG). In this paper, a numerical study has been carried out to investigate the heat transfer characteristics of supercritical LNG in horizontal tubes. The thermo-physical properties of supercritical LNG were used for this study, and the influence of inlet LNG mass flow rate on heat transfer was investigated. Numerical results showed that the LNG flow in horizontal tubes included two stages. In the first stage, the surface heat transfer coefficients increased significantly with the increase of the fluid bulk temperature and reached a maximum value when the fluid bulk temperature equaled the pseudo-critical point . After the maximum, the surface heat transfer coefficients fell rapidly with the increase of the fluid bulk temperature. With increasing the inlet LNG mass flow rate, the surface heat transfer coefficients increased due to the increased fluid velocity in horizontal tubes.


Author(s):  
Feng Xu ◽  
Qiusheng Liu ◽  
Satoshi Kawaguchi ◽  
Makoto Shibahara

Abstract The blanket modules of first wall need bear tremendous heat flux due to the very high temperature of plasma in the nuclear fusion reactor. Therefore, it is significant to clarify the knowledge of transient heat transfer process for helium gas flowing in the tubes installed in the blanket modules. In this research, the transient heat transfer process of turbulent forced convection for helium gas flowing in a horizontal minichannel was experimentally investigated. The test tube made of platinum with the inner diameter of 1.8 mm, the wall thickness of 0.1 mm and the effective length of 90 mm was heated by a direct current from power source. The heat generation rate of the test tube, Q̇, was raised with an exponential function, Q̇ = Q0 exp(t/τ), where Q0 is the initial heat generation rate, t is time, and τ is e-folding time of heat generation rate. The heat generation rates of the test tube were controlled and measured by a heat input control system. The flow rates were adjusted by the bypass of gas loop and measured by the turbine flow meter. The experiment was conducted under the e-folding time of heat generation rate ranged from 40 ms to 15 s. Based on experimental data, it is obvious that the heat flux and temperature difference between surface temperature of test tube and bulk temperature of helium gas increased with the exponentially increasing of heat generation rate. At the same flow velocity, the heat transfer coefficients approached constant values when the e-folding time is longer than about 1 s (quasi-steady state), but increased with a decrease of e-folding time when the e-folding time is smaller than about 1 s (transient state). The heat transfer coefficients increased with the increase in flow velocities but showed less dependent on flow velocities at shorter e-folding time. Furthermore, the Nusselt number under quasi-steady and transient condition was affected by the Reynolds number and the Fourier number.


1990 ◽  
Vol 112 (4) ◽  
pp. 843-848 ◽  
Author(s):  
A. M. Osman ◽  
J. V. Beck

Methodological and experimental aspects of the estimation of transient heat transfer coefficients in quenching experiments, using inverse heat transfer methods, were addressed and investigated. Beck’s method was used for the estimation of the transient heat transfer coefficient history from interior transient temperature measurements during quenching. Experiments involved plunging a high-purity copper sphere into cooling baths without boiling. The sphere was instrumented with several interior thermocouples for measuring the transient temperature response during quenching. Water and ethylene glycol were investigated. The early transient values of the heat transfer coefficient history were found to be about 100–120 percent higher than the values predicted using well-known empirical correlations for free convection. The later time values were in good agreement with those predicted with empirical correlations. The transient inverse technique has the capability of estimating early transients and subsequent quasi-steady-state values of heat transfer coefficient in a single transient experiment.


Author(s):  
Rico Poser ◽  
Jens von Wolfersdorf ◽  
Klaus Semmler

Transient heat transfer experiments were performed in a model of a multi-pass gas turbine blade cooling circuit. The inner surface of the Plexiglas model was coated with thermochromic liquid crystals in order to determine the internal heat transfer coefficients. A change in inlet temperature is applied using a pre-cooled heat exchanger. As for simple geometries the analytical solution of Fourier’s equation can often be directly used for data evaluation, one ought to pay attention to complex passages. The reason has to be seen that the flow in complex passages has to be characterized by local and time dependent fluid temperatures. As a direct consequence data evaluation might be limited to small evaluation areas especially far downstream. Otherwise the uncertainties in the heat transfer results will increase substantially. In the present study the sensitivity of the transient method for complex passages has been analyzed theoretically and applied experimentally.


Sign in / Sign up

Export Citation Format

Share Document