Euler Number Based Orifice Discharge Coefficient Relationship

2003 ◽  
Vol 125 (1) ◽  
pp. 189-191 ◽  
Author(s):  
Gerald L. Morrison

A new relationship for orifice flow meter discharge coefficients has been developed which replaces the Reynolds number dependence with the Euler number. Both relationships have the same accuracy for the calculation of the discharge coefficient but the new relationship eliminates the need to know fluid viscosity.

Author(s):  
Boualem Laribi ◽  
Pierre Wauters ◽  
Mohamed Aichouni

The present work is concerned a comparative study of the decay of swirling turbulent pipe flow downstream of three flow conditioners, the Etoile, the Tube bundle, and the Laws perforate plate, and its effect on accuracy of orifice plate flow meter. The swirl was generated by a double 90° degrees elbows in perpendicular planes. The discharge coefficients were measured with 3 different orifice meters with β = 0.5, 0.62, 0.70 at different Reynolds number. As a conclusion, the experimental study of the three flow conditioners used separately shows that the flow need longer distance for close to fully developed pipe flow and some errors, by reason of the swirl, on the discharge coefficient were inevitable for distance less 12D.


2002 ◽  
Vol 2002 (5-1) ◽  
pp. 83-88
Author(s):  
Tatsuya FUNAKI ◽  
Kenji KAWASHIMA ◽  
Toshinori FUJITA ◽  
Toshiharu KAGAWA

2000 ◽  
Vol 123 (2) ◽  
pp. 238-248 ◽  
Author(s):  
Oguz Uzol ◽  
Cengiz Camci ◽  
Boris Glezer

The internal fluid mechanics losses generated between the blade plenum chamber and a reference point located just downstream of the trailing edge are investigated for a turbine blade trailing edge cooling system. The discharge coefficient Cd is presented as a function of the free-stream Reynolds number, cut-back length, spanwise rib spacing, and chordwise rib length. The results are presented in a wide range of coolant to free-stream mass flow rate ratios. The losses from the cooling system show strong free-stream Reynolds number dependency, especially at low ejection rates, when they are correlated against the coolant to free-stream pressure ratio. However, when Cd is correlated against a coolant to free-stream mass flow rate ratio, the Reynolds number dependency is eliminated. The current data clearly show that internal viscous losses due to varying rib lengths do not differ significantly. The interaction of the external wall jet in the cutback region with the free-stream fluid is also a strong contributor to the losses. Since the discharge coefficients do not have Reynolds number dependency at high ejection rates, Cd experiments can be performed at a low free-stream Reynolds number. Running a discharge coefficient experiment at low Reynolds number (or even in still air) will sufficiently define the high blowing rate portion of the curve. This approach is extremely time efficient and economical in finding the worst possible Cd value for a given trailing edge coolant system.


MAPAN ◽  
2015 ◽  
Vol 30 (2) ◽  
pp. 77-84 ◽  
Author(s):  
Gunawan ◽  
Harijono A. Tjokronegoro ◽  
Edi Leksono ◽  
Nugraha Nugraha

Author(s):  
Noriyuki Furuichi ◽  
Kar-Hooi Cheong ◽  
Yoshiya Terao ◽  
Shinichi Nakao ◽  
Keiji Fujita ◽  
...  

Discharge coefficients for three flow nozzles based on ASME PTC 6 are measured under many flow conditions at AIST, NMIJ and PTB. The uncertainty of the measurements is from 0.04% to 0.1% and the Reynolds number range is from 1.3×105 to 1.4×107. The discharge coefficients obtained by these experiments is not exactly consistent to one given by PTC 6 for all examined Reynolds number range. The discharge coefficient is influenced by the size of tap diameter even if at the lower Reynolds number region. Experimental results for the tap of 5 mm and 6 mm diameter do not satisfy the requirements based on the validation procedures and the criteria given by PTC 6. The limit of the size of tap diameter determined in PTC 6 is inconsistent with the validation check procedures of the calibration result. An enhanced methodology including the term of the tap diameter is recommended. Otherwise, it is recommended that the calibration test should be performed at as high Reynolds number as possible and the size of tap diameter is desirable to be as small as possible to obtain the discharge coefficient with high accuracy.


Author(s):  
Noriyuki Furuichi ◽  
Yoshiya Terao ◽  
Shinichi Nakao ◽  
Keiji Fujita ◽  
Kazuo Shibuya

The discharge coefficients of the throat tap flow nozzle based on ASME PTC 6 are measured in wide Reynolds number range from Red=5.8×104 to Red=1.4×107. The nominal discharge coefficient (the discharge coefficient without tap) is determined from the discharge coefficients measured for different tap diameters. The tap effects are correctly obtained by subtracting the nominal discharge coefficient from the discharge coefficient measured. Finally, by combing the nominal discharge coefficient and the tap effect determined in three flow regions, that is, laminar, transitional and turbulent flow region, the new equations of the discharge coefficient are proposed in three flow regions.


2002 ◽  
Vol 18 (3) ◽  
pp. 153-161 ◽  
Author(s):  
Chun-Lang Yeh

AbstractA computational model for flow in a plain-orifice atomizer is established to examine the inlet and geometry effects on discharge coefficients. The volume of fluid (VOF) method with finite volume formulation was employed to capture the liquid/gas interface. A continuum Surface Force (CSF) model was adopted to model the surface tension. The body-fitted coordinate system was used to facilitate the configuration of the atomizer. The influences of the inlet chamfer angle, the orifice length/diameter ratio, the Reynolds number, and the inlet turbulence intensity are analyzed. It is found that the optimum discharge coefficient occurs at a chamfer angle of about 50°. The discharge coefficient at first increases with the increase in the orifice length/diameter ratio and then it decreases. The discharge coefficient increases with the increase in the Reynolds number up to Re = 40000, after which it remains sensibly constant. The influence of the inlet turbulence intensity on discharge coefficient is not significant, especially for a longer orifice.


Sign in / Sign up

Export Citation Format

Share Document