Measurement and Prediction of Tape Cupping Under Mechanical and Hygrothermal Loads and Its Influence on Debris Generation in Linear Tape Drives

2003 ◽  
Vol 125 (2) ◽  
pp. 364-376 ◽  
Author(s):  
William W. Scott ◽  
Bharat Bhushan

Magnetic tapes, which may be modeled as three-ply laminates, exhibit transverse curvature, or cupping, as manufactured and when mechanical and hygrothermal loads are applied. Among other things, this cupping affects debris generation since it influences the contact between the flawed tape edge and head, the point where much of the debris generation occurs. This influence on debris generation is demonstrated experimentally in this study. Much more debris accumulates near the tape edge-head contact than at other contact locations. No difference in debris generation was found for two tapes with slightly different residual cupping (which is controlled during manufacturing). The target residual cupping is usually negative, which means that the tape bows out towards the tape so that the edges are farther away from the head than the center of contact is, so as to reduce contact pressure with the tape edges. However, cupping generally changes upon application of a tension and generally reduces the importance of residual cupping, which accounts for the failure to find a difference in debris generation for tapes with slightly different residual cupping. A finite element method model that uses laminate shell elements and accounts for in-plane stress stiffening, thus making it suitable for thin laminate modeling, was created. This modeling demonstrates that application of tensile and normal (used to simulate head contact) loads leads to cupping movement in the positive direction, which indicates a more severe edge contact, for an increase in front coat Young’s modulus and/or an increase in front coat thickness. The same trends hold for an increase in back coat Young’s modulus and/or an increase in back coat thickness. Modeling also demonstrates that cupping moves in the positive direction for an increase in the substrate’s Young’s modulus in the transverse direction for MP and ME tapes. An analytical model demonstrates that increases in temperature and front coat thermal expansion coefficient leads to cupping movement in the negative direction. The same trends hold for changes in relative humidity.

2006 ◽  
Vol 39 ◽  
pp. S19
Author(s):  
M.R. Bosisio ◽  
M. Talmant ◽  
W. Skalli ◽  
P. Laugier ◽  
D. Mitton

2019 ◽  
Vol 17 (08) ◽  
pp. 1950054
Author(s):  
Tittu Varghese Mathew ◽  
Lars Beex ◽  
Stéphane PA Bordas ◽  
Sundararajan Natarajan

In this paper, the cell-based smoothed finite element method is extended to solve stochastic partial differential equations with uncertain input parameters. The spatial field of Young’s Modulus and the corresponding stochastic results are represented by Karhunen-Loéve expansion and polynomial chaos expansion, respectively. Young’s Modulus of structure is considered to be random for stochastic static as well as free vibration problems. Mathematical expressions and the solution procedure are articulated in detail to evaluate the statistical characteristics of responses in terms of the static displacements and the free vibration frequencies. The feasibility and the effectiveness of the proposed SGCS–FEM method in terms of accuracy and lower demand on the mesh size in the solution domain over that of conventional FEM for stochastic problems are demonstrated by carefully chosen numerical examples. From the numerical study, it is inferred that the proposed framework yields accurate results.


2019 ◽  
Vol 8 (3) ◽  
pp. 7194-7199

Bearings are critical components for the transmission of motion in machines. Automotive components, especially bearings, will wear out over a certain period of time because they are constantly subjected to high levels of stress and friction. Studies have proven that coatings can extend the lifespan of bearings. Hence, it is necessary to conduct studies on coatings for bearings, particularly the mechanical and wear properties of the coating material. This detailed study focused on the mechanical properties of single-coatings of TiN and TiAIN using the finite element method (FEM). The mechanical properties that can be obtained from nano-indentation experiments are confined to just the Young’s modulus and hardness. Therefore, nanoindentation simulations were conducted together with the finite element method to obtain more comprehensive mechanical properties such as the yield strength and Poisson’s ratio. In addition, various coating materials could be examined by means of these nanoindentation simulations, as well the effects of those parameters that could not be controlled experimentally, such as the geometry of the indenter and the bonding between the coating and the substrate. The simulations were carried out using the ANSYS Mechanical APDL software. The mechanical properties such as the Young’s modulus, yield strength, Poisson’s ratio and tangent modulus were 370 GPa, 19 GPa, 0.21 and 10 GPa, respectively for the TiAlN coating and 460 GPa, 14 GPa, 0.25 and 8 GPa, respectively for the TiN coating. The difference between the mechanical properties obtained from the simulations and experiments was less than 5 %.


2018 ◽  
Vol 28 (2) ◽  
pp. 193
Author(s):  
Adi Patria

Numerical modeling using Comsol Multiphysics, with Finite Element Method, has been carried out to study fracture initiation, linkage, and deflection of the Blue Lias Formation. Data were from outcrop observation where hydrofractures were well observed. Three models were set up to understand how fractures initiated, linked and arrested. The Young’s modulus of shales (Esh) was set with the value of 1 GPa, 5 GPa, and 10 GPa. The fluid excess pressure was applied with the value of 5 MPa, 10 MPa, and 15 MPa. The Young’s modulus of the limestone (Elst) was a constant at 10 GPa. The first model showed how the overburden induces fracture initiation. The results indicated that tensile stress concentrated only within limestone and favour to form fractures. The second model was about linking of fractures. The result explained that shear stress was dominantly concentrated in limestone layers. Previous hydrofractures possibly linked up forming shear fractures and en-echelon fractures. The third model was run to understand fracture propagation and deflection. The result was that tensile stress concentrated at the hydrofracture tips close to the contacts between limestone and shale. Hydrofractures were deflected, and in some places, hydrofractures were likely started to propagate through shale.Permodelan numerik dengan Comsol Multiphysics berdasarkan metode Elemen Terbatas  dilakukan untuk mempelajari inisiasi, hubungan, dan defleksi rekahan Formasi Blue Lias. Data berasal dari observasi singkapan dimana hydrofracture teramati. Tiga model dibuat untuk memahami bagaimana rekahan terinisiasi, terhubung, terambatkan dan terhenti. Modulus Young’s batulempung (Esh) diatur dengan nilai 1 GPa, 5GPa, dan 10 GPa. Tekanan kelebihan cairan (fluid excess pressure) yang diterapkan sebesar 5 MPa, 10 MPa, dan 15 MPa. Modulus Young’s batugamping (Elst) konstan sebesar 10 GPa. Model pertama menunjukkan bagaimana pembebanan mempengaruhi inisiasi rekahan. Hasil perhitungan menunjukkan bahwa tekanan tarik terkonsentrasi hanya pada lapisan batugamping dan memungkinkan terbentuknya rekahan. Model kedua mengenai hubungan rekahan. Model menunjukkan bahwa tekanan geser terkonsentrasi pada lapisan batugamping secara dominan. Hydrofracture yang telah ada akan terhubung membentuk rekahan geser and rekahan en-echelon. Model ketiga dihitung untuk memahami perambatan dan defleksi rekahan. Hasilnya menunjukkan bahwa tekanan tarik terkonsentrasi pada ujung hydrofracture dekat kontak lapisan batugamping dan batulempung. Hydrofracture terdefleksi dan pada beberapa titik mulai merambat menembus batulempung.


Author(s):  
Aldemon Lage Bonifácio ◽  
Julia Castro Mendes ◽  
Michèle Cristina Resende Farage ◽  
Flávio de Souza Barbosa ◽  
Anne-Lise Beaucour

Abstract The compressive strength (fc) and Young’s modulus (Ec) of concretes are properties of great importance in civil engineering problems. To this day, despite the relevance of the subject, concretes are still designed based on charts and empirical formulae. This scenario is even more imprecise for lightweight aggregate concretes (LWAC), which contain less design methodologies and case studies available in the literature. In this sense, the present work presents a numerical simulation for predicting the properties of LWAC’s specimens using the Finite Element Method. The material was considered as biphasic, comprising lightweight aggregates and the enveloping mortar. Each phase was modelled with its own compressive strength, tensile strength and Young’s modulus. The achieved numerical results for fc and Ec were compared with their experimental counterparts, obtained from the literature. In total, 48 concrete formulations were assessed. Numerical results showed fair agreement with the experimental data. In general, the Mean Absolute Percentage Error (MAPE) was lower for the shale aggregates for both Young's modulus (1.75% versus 4.21% of expanded clay) and compressive strength (4.19% versus 9.89% of expanded clay). No clear trend of error was identified in relation to the aggregate proportion or to the mortar types, in which the MAPE varied from 2.36% to 8.13%. In conclusion, the simplification to spherical aggregates has shown satisfactory results, as has the adoption of a 2D model, which require less computational resources. Results encourage further applications with more complex geometrical aspects to improve the mix design and safety of LWAC.


2020 ◽  
Vol 8 (5) ◽  
pp. 2900-2904

Finte Element Analysis (FEA) of implants and fixators were carried out in this paper. Various implants and fixators were carried these fixators were used for various fractures occurring in the human bone. The implants and fixators were modeled and analysed using FEA software called ANYSWorkBench. These results were analysed, it is found titanium implants are more suitable for implants and fixators due to its rigidity and strength and young’s modulus very near tom the young’s modulus of the bone.


Sign in / Sign up

Export Citation Format

Share Document