Effect of Squealer Geometry on Tip Flow and Heat Transfer for a Turbine Blade in a Low Speed Cascade

2004 ◽  
Vol 126 (4) ◽  
pp. 546 ◽  
Author(s):  
Vikrant Saxena ◽  
Srinath V. Ekkad
Author(s):  
Gongnan Xie ◽  
Bengt Sunde´n

Gas turbine blade tips encounter large heat load as they are exposed to the high temperature gas. A common way to cool the blade and its tip is to design serpentine passages with 180-deg turns under the blade tip-cap inside the turbine blade. Improved internal convective cooling is therefore required to increase the blade tip life time. This paper presents numerical predictions of turbulent fluid flow and heat transfer through two-pass channels with and without guide vanes placed in the turn regions using RANS turbulence modeling. The effects of adding guide vanes on the tip-wall heat transfer enhancement and the channel pressure loss were analyzed. The guide vanes have a height identical to that of the channel. The inlet Reynolds numbers are ranging from 100,000 to 600,000. The detailed three-dimensional fluid flow and heat transfer over the tip-walls are presented. The overall performances of several two-pass channels are also evaluated and compared. It is found that the tip heat transfer coefficients of the channels with guide vanes are 10∼60% higher than that of a channel without guide vanes, while the pressure loss might be reduced when the guide vanes are properly designed and located, otherwise the pressure loss is expected to be increased severely. It is suggested that the usage of proper guide vanes is a suitable way to augment the blade tip heat transfer and improve the flow structure, but is not the most effective way compared to the augmentation by surface modifications imposed on the tip-wall directly.


Author(s):  
Qihe Huang ◽  
Jiao Wang ◽  
Lei He ◽  
Qiang Xu

A numerical study is performed to simulate the tip leakage flow and heat transfer on the first stage rotor blade tip of GE-E3 turbine, which represents a modern gas turbine blade geometry. Calculations consist of the flat blade tip without and with film cooling. For the flat tip without film cooling case, in order to investigate the effect of tip gap clearance on the leakage flow and heat transfer on the blade tip, three different tip gap clearances of 1.0%, 1.5% and 2.5% of the blade span are considered. And to assess the performance of the turbulence models in correctly predicting the blade tip heat transfer, the simulations have been performed by using four different models (the standard k-ε, the RNG k-ε, the standard k-ω and the SST models), and the comparison shows that the standard k-ω model provides the best results. All the calculations of the flat tip without film cooling have been compared and validated with the experimental data of Azad[1] and the predictions of Yang[2]. For the flat tip with film cooling case, three different blowing ratio (M = 0.5, 1.0, and 1.5) have been studied to the influence on the leakage flow in tip gap and the cooling effectiveness on the blade tip. Tip film cooling can largely reduce the overall heat transfer on the tip. And the blowing ratio M = 1.0, the cooling effect for the blade tip is the best.


2005 ◽  
Vol 2005 (1) ◽  
pp. 36-44 ◽  
Author(s):  
R. Ben-Mansour ◽  
L. Al-Hadhrami

Internal cooling is one of the effective techniques to cool turbine blades from inside. This internal cooling is achieved by pumping a relatively cold fluid through the internal-cooling channels. These channels are fed through short channels placed at the root of the turbine blade, usually called entrance region channels. The entrance region at the root of the turbine blade usually has a different geometry than the internal-cooling channel of the blade. This study investigates numerically the fluid flow and heat transfer in one-pass smooth isothermally heated channel using the RNGk−εmodel. The effect of Reynolds number on the flow and heat transfer characteristics has been studied for two mass flow rate ratios (1/1and1/2) for the same cooling channel. The Reynolds number was varied between10 000and50 000. The study has shown that the cooling channel goes through hydrodynamic and thermal development which necessitates a detailed flow and heat transfer study to evaluate the pressure drop and heat transfer rates. For the case of unbalanced mass flow rate ratio, a maximum difference of8.9% in the heat transfer rate between the top and bottom surfaces occurs atRe=10 000while the total heat transfer rate from both surfaces is the same for the balanced mass flow rate case. The effect of temperature-dependent property variation showed a small change in the heat transfer rates when all properties were allowed to vary with temperature. However, individual effects can be significant such as the effect of density variation, which resulted in as much as9.6% reduction in the heat transfer rate.


Author(s):  
Dieter E. Bohn ◽  
Volker J. Becker ◽  
Karsten A. Kusterer ◽  
Yokiu Otsuki ◽  
Takao Sugimoto ◽  
...  

Modern cooling configurations for turbine blades include complex serpentine-shaped cooling channel geometries for internal-forced convective cooling. The channels are ribbed in order to enhance the convective beat transfer. The design of such cooling configurations is within the power of modem CFD-codes with combined heat transfer analysis in solid body regions. One approach is the conjugate fluid flow and heat transfer solver, CHT-Flow, developed at the Institute of Steam and Gas Turbines, Aachen University of Technology. It takes into account of the mutual influences of internal and external fluid flow and heat transfer. The strategy of the procedure is based on a multi-block-technique and a direct coupling module for fluid flow regions and solid body regions. The configuration under investigation in the present paper is based on a test design of a convective cooled turbine blade with serpentine-shaped cooling passages and cooling gas ejection at the blade tip and the trailing edge. The numerical investigations focus on secondary flow phenomena in the ducts and on the heat transfer analysis at the cooling channel walls. In the first part, the cooling channels are investigated with adiabatic smooth & ribbed walls. The calculations are carried out for the stationary and rotating configuration. Concerning the heat transfer analysis, the results of the ribbed configuration with a fixed thermal boundary condition at the walls in the stationary case are presented. Furthermore, in order to demonstrate the capability of the conjugate method to work without thermal boundary conditions, the cooling configuration is calculated including the external blade flow and the blade walls with internal and external heat transfer under typical operation conditions of gas turbines. The numerical code is used to determine the blade surface temperatures.


Author(s):  
E. E. Donahoo ◽  
C. Camci ◽  
A. K. Kulkarni ◽  
A. D. Belegundu

There are many heat transfer augmentation methods that are employed in turbine blade design, such as impingement cooling, film cooling, serpentine passages, trip strips, vortex chambers, and pin fins. The use of crosspins in the trailing edge section of turbine blades is commonly a viable option due to their ability to promote turbulence as well as supply structural integrity and stiffness to the blade itself. Numerous crosspin shapes and arrangements are possible, but only certain configurations offer high heat transfer capability while maintaining taw total pressure loss. This study preseots results from 3-D numerical simulations of airflow through a turbine blade internal cooling passage. The simulations model viscous flow and heat transfer over full crosspins of circular cross-section with fixed height-to-diameter ratio of 0.5, fixed transverse-to-diameter spacing ratio of 1.5, and varying streamwise spacing. Preliminary analysis indicates that endwall effects dominate the flow and heat transfer at lower Reynolds numbers. The flow dynamics involved with the relative dose proximity of the endwalls for such short crosspins have a definite influeoce on crosspin efficiency for downstream rows.


Author(s):  
Bin Wu ◽  
Xing Yang ◽  
Lv Ye ◽  
Zhao Liu ◽  
Yu Jiang ◽  
...  

In this paper, effects of three kinds of turning vanes on flow and heat transfer of turbine blade tip-walls with a U-shaped channel have been numerically studied. Numerical simulations are performed to solve three-dimensional, steady, Reynolds-averaged Navier-Stokes equations with the standard k-ω turbulence model. The aspect ratio (AR) and the hydraulic diameter of the channel are 2 and 93.13 mm, respectively. The effects of single-layer, double-layer and double-layer dome-shaped turning vanes in the turn region on the tip-wall heat transfer and overall pressure loss of rectangular U-shaped channels are analyzed. Detailed flow and heat transfer characteristics over the tip-walls, as well as the overall performance, are presented and compared with each other. Results show that the tip-wall heat transfer coefficients with double-layer dome-shaped turning vanes are the highest among the three cases. Double-layer dome-shaped turning vanes can promote the lateral spreading of secondary flow and effectively increase the uniformity of heat transfer on the tip-wall. More importantly, this structure can make the cooling air expand and accelerate at the center region of the top of the U-shaped channel, resulting in more heat to be removed from the tip-wall. Additionally, double-layer dome-shaped turning vanes can effectively reduce the pressure loss of the channel.


Sign in / Sign up

Export Citation Format

Share Document