scholarly journals A Computational Visualization of Three Dimensional Flow: Finding Optimum Heat Transfer and Pressure Drop Characteristics From Short Cross-Pin Arrays and Comparison With Two Dimensional Calculations

Author(s):  
E. E. Donahoo ◽  
C. Camci ◽  
A. K. Kulkarni ◽  
A. D. Belegundu

There are many heat transfer augmentation methods that are employed in turbine blade design, such as impingement cooling, film cooling, serpentine passages, trip strips, vortex chambers, and pin fins. The use of crosspins in the trailing edge section of turbine blades is commonly a viable option due to their ability to promote turbulence as well as supply structural integrity and stiffness to the blade itself. Numerous crosspin shapes and arrangements are possible, but only certain configurations offer high heat transfer capability while maintaining taw total pressure loss. This study preseots results from 3-D numerical simulations of airflow through a turbine blade internal cooling passage. The simulations model viscous flow and heat transfer over full crosspins of circular cross-section with fixed height-to-diameter ratio of 0.5, fixed transverse-to-diameter spacing ratio of 1.5, and varying streamwise spacing. Preliminary analysis indicates that endwall effects dominate the flow and heat transfer at lower Reynolds numbers. The flow dynamics involved with the relative dose proximity of the endwalls for such short crosspins have a definite influeoce on crosspin efficiency for downstream rows.

Author(s):  
Mohammad Alizadeh ◽  
Ali Izadi ◽  
Alireza Fathi ◽  
Hiwa Khaledi

Modern turbine blades are cooled by air flowing through internal cooling passages. Three-Dimensional numerical simulation of these blade cooling passages is too time-consuming because of their complex geometries. These geometrical complexities exist as a result of using various kinds of cooling technologies such as rib turbulators (inline, staggered, or inclined ribs), pin fin, 90 and 180 degree turns (both sharp and gradual turns, with and without turbulators), finned passage, by-pass flow and tip cap impingement. One possible solution to simulate such sophisticated passages is to use the one-dimensional network method, which is presented in the current work. Turbine blade cooling channels are flow passages having multiple inlets and exits. The present in-house developed solver uses a network method for analyzing such a complicated flow pattern. In this method, cooling system is represented by a network of elements connected together at different nodes. Using assumed wall temperature, internal flow and heat transfer is calculated. The final goal of this computation is a set of boundary conditions for conjugate blade heat transfer simulation (coolant side boundary conditions). For validation, it is required to use experimental data that include temperature distribution of blade coolant-side walls. Since there is no experimental work with such data in the open literature, numerical computation is validated using available analytical and published numerical data. Calculated results agree well with analytical and numerical data. In order to exhibit the potential capabilities of the developed code, flow and heat transfer in a complicated internal cooling passage of a typical vane are investigated using the network method.


Author(s):  
Yong-feng Ding ◽  
Hui-ren Zhu ◽  
Qiang Gao

Abstract Jet impingement cooling is an important way to cool turbine blades. Ribbed channels are widely used in the chord region of turbine blades and are an important internal cooling structure. In the design process of the internal cooling structure of the conventional turbine blade, it is the primary consideration of the designer to improve the heat transfer coefficient at the surface of the inner cooling passage. With the development of the design of the inner cooling structure of the turbine blade, the pressure loss caused by the inner cooling passage has been paid more and more attention. Therefore, many studies have begun to comprehensively consider the potential of various rib structures in enhancing heat transfer and reducing flow resistance. In the design process of the internal cooling structure of the conventional turbine blade, the rib is placed on the blade, which increases the blade burden. In this paper, the classic rib structure is changed, and the rib is placed on the impingement plate to research its heat transfer characteristics. In this study, the effects of ribs of different structures on heat transfer were tested. Calculate the working conditions of Reynolds number Re = 15000, 20000, 25000, 30000. The numerical calculation of the SST k-w model is used to evaluate the average Nusselt number of the target plate and the flow coefficient of the channel, and the heat transfer distribution and flow field are analyzed. This study is expected to achieve better coordination between improved heat transfer and reduced flow resistance.


Author(s):  
Karthik Krishnaswamy ◽  
◽  
Srikanth Salyan ◽  

The performance of a gas turbine during the service life can be enhanced by cooling the turbine blades efficiently. The objective of this study is to achieve high thermohydraulic performance (THP) inside a cooling passage of a turbine blade having aspect ratio (AR) 1:5 by using discrete W and V-shaped ribs. Hydraulic diameter (Dh) of the cooling passage is 50 mm. Ribs are positioned facing downstream with angle-of-attack (α) of 30° and 45° for discrete W-ribs and discerte V-ribs respectively. The rib profiles with rib height to hydraulic diameter ratio (e/Dh) or blockage ratio 0.06 and pitch (P) 36 mm are tested for Reynolds number (Re) range 30000-75000. Analysis reveals that, area averaged Nusselt numbers of the rib profiles are comparable, with maximum difference of 6% at Re 30000, which is within the limits of uncertainty. Variation of local heat transfer coefficients along the stream exhibited a saw tooth profile, with discrete W-ribs exhibiting higher variations. Along spanwise direction, discrete V-ribs showed larger variations. Maximum variation in local heat transfer coefficients is estimated to be 25%. For experimented Re range, friction loss for discrete W-ribs is higher than discrete-V ribs. Rib profiles exhibited superior heat transfer capabilities. The best Nu/Nuo achieved for discrete Vribs is 3.4 and discrete W-ribs is 3.6. In view of superior heat transfer capabilities, ribs can be deployed in cooling passages near the leading edge, where the temperatures are very high. The best THPo achieved is 3.2 for discrete V-ribs and 3 for discrete W-ribs at Re 30000. The ribs can also enhance the power-toweight ratio as they can produce high thermohydraulic performances for low blockage ratios.


2019 ◽  
Vol 9 (14) ◽  
pp. 2900
Author(s):  
Qi Jing ◽  
Yonghui Xie ◽  
Di Zhang

The trailing edge regions of high-temperature gas turbine blades are subjected to extremely high thermal loads and are affected by the external wake flow during operation, thus creating great challenges in internal cooling design. With the development of cooling technology, the dimple and protrusion have attracted wide attention for its excellent performance in heat transfer enhancement and flow resistance reduction. Based on the typical internal cooling structure of the turbine blade trailing edge, trapezoidal cooling channels with lateral extraction slots are modeled in this paper. Five channel outlet configurations, i.e., no second passage (OC1), radially inward flow second passage (OC2), radially outward flow second passage (OC3), top region outflow (OC4), both sides extractions (OC5), and three dimple/protrusion arrangements (all dimple, all protrusion, dimple–protrusion staggered arrangement) are considered. Numerical investigations are carried out, within the Re range of 10,000–100,000, to analyze the flow structures, heat transfer distributions, average heat transfer and friction characteristics and overall thermal performances in detail. The results show that the OC4 and OC5 cases have high heat transfer levels in general, while the heat transfer deterioration occurs in the OC1, OC2, and OC3 cases. For different dimple/protrusion arrangements, the protrusion case produces the best overall thermal performance. In conclusion, for the design of trailing edge cooling structures with lateral slots, the outlet configurations of top region outflow and both sides extractions, and the all protrusion arrangement, are recommended.


2005 ◽  
Vol 2005 (1) ◽  
pp. 36-44 ◽  
Author(s):  
R. Ben-Mansour ◽  
L. Al-Hadhrami

Internal cooling is one of the effective techniques to cool turbine blades from inside. This internal cooling is achieved by pumping a relatively cold fluid through the internal-cooling channels. These channels are fed through short channels placed at the root of the turbine blade, usually called entrance region channels. The entrance region at the root of the turbine blade usually has a different geometry than the internal-cooling channel of the blade. This study investigates numerically the fluid flow and heat transfer in one-pass smooth isothermally heated channel using the RNGk−εmodel. The effect of Reynolds number on the flow and heat transfer characteristics has been studied for two mass flow rate ratios (1/1and1/2) for the same cooling channel. The Reynolds number was varied between10 000and50 000. The study has shown that the cooling channel goes through hydrodynamic and thermal development which necessitates a detailed flow and heat transfer study to evaluate the pressure drop and heat transfer rates. For the case of unbalanced mass flow rate ratio, a maximum difference of8.9% in the heat transfer rate between the top and bottom surfaces occurs atRe=10 000while the total heat transfer rate from both surfaces is the same for the balanced mass flow rate case. The effect of temperature-dependent property variation showed a small change in the heat transfer rates when all properties were allowed to vary with temperature. However, individual effects can be significant such as the effect of density variation, which resulted in as much as9.6% reduction in the heat transfer rate.


Author(s):  
Nicholas A. Evich ◽  
Nicholas R. Larimer ◽  
Mary I. Frecker ◽  
Matthew J. Rau

Abstract Advanced manufacturing techniques have improved dramatically in recent years and design freedom for engineered components and systems has never been greater. Despite these advancements, the majority of our design tools for thermal-fluids systems are still rooted within traditional architectures and manufacturing techniques. In particular, the complex nature of two-phase flow and heat transfer has made the development of design methods that can accommodate these complex geometries enabled by new manufacturing techniques challenging. Here, we investigate a new design method for two-phase flow systems. We conduct a multiobjective parameter study considering two-phase flow and heat transfer through a single channel with a circular cross section. To increase our design degrees of freedom, we allow the channel to increase or decrease in cross-sectional area along its flow length, but constrain the channel inlet and outlet to a constant hydraulic diameter. Maximizing heat transfer and minimizing pressure drop are the two design objectives, which we evaluate using two-phase heat transfer correlations and the Homogeneous Equilibrium Model. We find that using small expansion angles can greatly reduce two-phase flow pressure drop and also provide high heat transfer coefficients when compared to straight channel designs. We present a set of feasible designs for varying input heat fluxes, liquid mass flow rates, and channel orientation angles and show how the ideal expansion channel angle varies with these operational conditions.


2019 ◽  
Vol 29 (3) ◽  
pp. 1178-1207 ◽  
Author(s):  
Mohammad Fazli ◽  
Mehrdad Raisee

PurposeThis paper aims to predict turbulent flow and heat transfer through different channels with periodic dimple/protrusion walls. More specifically, the performance of various low-Rek-ε turbulence models in prediction of local heat transfer coefficient is evaluated.Design/methodology/approachThree low-Re numberk-εturbulence models (the zonalk-ε, the lineark-εand the nonlineark-ε) are used. Computations are performed for three geometries, namely, a channel with a single dimpled wall, a channel with double dimpled walls and a channel with a single dimple/protrusion wall. The predictions are obtained using an in house finite volume code.FindingsThe numerical predictions indicate that the nonlineark-εmodel predicts a larger recirculation bubble inside the dimple with stronger impingement and upwash flow than the zonal and lineark-εmodels. The heat transfer results show that the zonalk-εmodel returns weak thermal predictions in all test cases in comparison to other turbulence models. Use of the lineark-εmodel leads to improvement in heat transfer predictions inside the dimples and their back rim. However, the most accurate thermal predictions are obtained via the nonlineark-εmodel. As expected, the replacement of the algebraic length-scale correction term with the differential version improves the heat transfer predictions of both linear and nonlineark-εmodels.Originality/valueThe most reliable turbulence model of the current study (i.e. nonlineark-εmodel) may be used for design and optimization of various thermal systems using dimples for heat transfer enhancement (e.g. heat exchangers and internal cooling system of gas turbine blades).


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
Evan A. Sewall ◽  
Danesh K. Tafti

The problem of accurately predicting the flow and heat transfer in the ribbed internal cooling duct of a rotating gas turbine blade is addressed with the use of large eddy simulations (LES). Four calculations of the developing flow region of a rotating duct with ribs on opposite walls are used to study changes in the buoyancy parameter at a constant rotation rate. The Reynolds number is 20,000, the rotation number is 0.3, and the buoyancy parameter is varied between 0.00, 0.25, 0.45, and 0.65. Previous experimental studies have noted that leading wall heat transfer augmentation decreases as the buoyancy parameter increases with low buoyancy, but heat transfer then increases with high buoyancy. However, no consistent physical explanation has been given in the literature. The LES results from this study show that the initial decrease in augmentation with buoyancy is a result of larger separated regions at the leading wall. However, as the separated region spans the full pitch between ribs with an increase in buoyancy parameter, it leads to increased turbulence and increased entrainment of mainstream fluid, which is redirected toward the leading wall by the presence of a rib. The impinging mainstream fluid results in heat transfer augmentation in the region immediately upstream of a rib. The results obtained from this study are in very good agreement with previous experimental results.


Sign in / Sign up

Export Citation Format

Share Document