A Study of the Nonlinear Interaction Between an Eccentric Squeeze Film Damper and an Unbalanced Flexible Rotor

2004 ◽  
Vol 126 (4) ◽  
pp. 855-866 ◽  
Author(s):  
Philip Bonello ◽  
Michael J. Brennan ◽  
Roy Holmes

In this paper, the nonlinear interaction between an eccentric squeeze film damper and an unbalanced flexible rotor is investigated, paying particular attention to the effect of cavitation in the damper. A harmonic balance method that uses the receptance functions of the rotating linear part of the system to determine periodic solutions to the nonlinear problem is used to predict vibration levels in a test rig. By comparing predictions obtained respectively with, and without, lower pressure limits for the squeeze film damper model, it is concluded that cavitation is promoted by increasing static eccentricity and/or unbalance level. This, in turn, is found to have a profound effect on the predictions for the critical vibration levels, which such dampers are designed to attenuate. Experimental results are presented to support the findings.


Author(s):  
Philip Bonello ◽  
Michael J. Brennan ◽  
Roy Holmes

The study of eccentric squeeze film damped rotor dynamic systems has largely concentrated on rigid rotors. In this paper, a newly developed receptance harmonic balance method is used to efficiently analyze a squeeze film damped flexible rotor test rig. The aim of the study is to investigate the influence of damper static eccentricity and unbalance level on cavitation and its resulting effect on the vibration level. By comparing predictions for the rotor vibration levels obtained respectively with, and without, lower pressure limits for the eccentric squeeze film damper model, it is demonstrated that cavitation is promoted by increasing static eccentricity and/or unbalance level. This, in turn, is found to have a profound effect on the predictions for the critical vibration levels, which such dampers are designed to attenuate. The reported findings are backed by experimental evidence from the test rig.



Author(s):  
C-C Siew ◽  
M Hill ◽  
R Holmes ◽  
M Brennan

This paper presents two efficient methods to calculate the unbalance vibration response of a flexible rotor provided with a squeeze-film damper (SFD) with retainer springs. Both methods are iterative and combine the harmonic balance and receptance approaches. The first method, called the modified iteration method (MIM), is suitable for predicting the three-dimensional mode shapes of a concentric SFD-rotor system. The second method, called the modified harmonic balance method (MHBM), is developed to calculate the non-linear vibration response of a flexible shaft provided with either a concentric or eccentric SFD. The system is also investigated experimentally under different conditions. The predictions computed by these methods are compared with experimental measurements and reasonably good agreement is obtained.



2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Wei Yan ◽  
Lidong He ◽  
Zhe Deng ◽  
Xingyun Jia

Abstract As a novel structural damper, the unique structural characteristics of the integral squeeze film damper (ISFD) solve the nonlinear problem of the traditional squeeze film damper (SFD), and it has good linear damping characteristics. In this research, the experimental studies of ISFD vibration reduction performance are carried out for various working conditions of unbalanced rotors. Two ball bearing-rotor system test rigs are built based on ISFD: a rigid rotor test rig and a flexible rotor test rig. When the rotational speed of rigid rotor is 1500 rpm, ISFD can reduce the amplitude of the rotor by 41.79%. Under different unbalance conditions, ISFD can effectively improve the different degrees of unbalanced faults in the rotor system, reduce the amplitude by 43.21%, and reduce the sensitivity of the rotor to unbalance. Under different rotational speed conditions, ISFD can effectively suppress the unbalanced vibration of rigid rotor, and the amplitude can be reduced by 53.51%. In the experiment of the unbalanced response of the flexible rotor, it is found that ISFD can improve the damping of the rotor system, effectively suppress the resonance of the rotor at the critical speed, and the amplitude at the first-order critical speed can be reduced by 31.72%.



Author(s):  
F. Chu ◽  
R. Holmes

There has been much research work carried out on various aspects of individual squeeze-film dampers (SFDs) but very little on the interplay between a damper and the rotating assembly of which it forms a part. In this paper, a flexible rotor-bearing assembly in a configuration, typical of a small centrifugal pump and incorporating an SFD is investigated theoretically and experimentally from the points of view of forced vibration control and stability control. It is found that change in rotor unbalance, SFD static eccentricity ratio and SFD supply pressure can cause significant movement of system resonances and vibration resulting from excessive damping. The provision of an SFD also delays the onset of instability and because of its nonlinearity, the SFD contributes more damping than can a linear damper when the vibration amplitude becomes large as instability develops. It is shown that this instability is curbed at some limit cycle, whose frequency is a system natural frequency.



Author(s):  
Feng He ◽  
Paul Allaire ◽  
Timothy Dimond

Squeeze film dampers in flexible rotors such as those in compressors, steam turbines, aircraft engines and other rotating machines are often modeled as linear devices. This linearization is valid only for a specified orbit where appropriate equivalent stiffness and damping coefficients can be found. However, squeeze film dampers are inherently nonlinear devices which complicates the analysis. This paper develops the harmonic balance method with a direct force model of the SFDs. This model is used for flexible rotors with squeeze film dampers where the rotor is treated as linear and the squeeze film damper is treated as nonlinear. The predictor-corrector method is employed to obtain the system forced response in the frequency domain after separating the nonlinear components from the linear components of the equations of motion. This approach is much more efficient than conventional full nonlinear transient analysis. The application considered in this paper is the low pressure (LP) compressor of an aircraft engine. The LP compressor rotor has two roller bearings with squeeze film dampers and one ball bearing without a squeeze film damper. Orbits at the fan end dampers and the turbine end dampers for both the harmonic balance and nonlinear transient modeling are compared for accuracy and calculation time. The HB method is shown to be 5 to 12 times faster computationally for similar results. Fast Fourier transform results were obtained for various shaft operating speeds. Results were also obtained for the unbalance response at different locations with gravity loading. Finally, unbalance response of the rotor with varying centering spring stiffness values were obtained. The results show that the centering spring stiffness for the turbine end damper is less sensitive than the fan end damper.



Author(s):  
Feng He ◽  
Paul E. Allaire ◽  
Saeid Dousti ◽  
Alexandrina Untaroiu

Squeeze film dampers play an important role in the dynamics of modern turbomachinery by improving vibrational response and stability. The present paper develops an effective tool for evaluating the forced response of these systems under parametric changes. A flexible rotor with multiple masses supported on a squeeze film damper at one end is investigated. The forced response of this asymmetrically supported system is obtained using the harmonic balance method with a predictor-corrector procedure. This response is examined with various parameters including unbalance forces with and without fluid inertia effects, unidirectional loads, stiffness of centering spring of the damper and the gyroscopic effects of the disks. The developed tool predicts the nonlinear jump phenomenon of the damper with large unbalance forces, indicates the present of multiple harmonics within the response with high damper eccentricity and shows the insensitivity of the damper to surrounding gyroscopic variation.



1998 ◽  
Vol 120 (1) ◽  
pp. 140-148 ◽  
Author(s):  
F. Chu ◽  
R. Holmes

There has been much research work carried out on various aspects of individual squeeze-film dampers (SFDs) but very little on the interplay between a damper and the rotating assembly of which it forms a part. In this paper, a flexible rotor-bearing assembly in a configuration, typical of a small centrifugal pump and incorporating an SFD, is investigated theoretically and experimentally from the points of view of forced vibration control and stability control. It is found that change in rotor unbalance, SFD static eccentricity ratio, and SFD supply pressure can cause significant movement of system resonances and vibration resulting from excessive damping. The provision of an SFD also delays the onset of instability and because of its nonlinearity, the SFD contributes more damping than can a linear damper when the vibration amplitude becomes large as instability develops. It is shown that this instability is curbed at some limit cycle, whose frequency is a system natural frequency.



Author(s):  
Philip Bonello ◽  
Pham Minh Hai

The computation of the unbalance vibration response of aero-engine assemblies fitted with nonlinear bearings requires the retention of a very large number of modes for reliable results. This renders most previously proposed nonlinear solvers unsuitable for this application. This paper presents three methods for the efficient solution of the problem. The first method is the recently developed impulsive receptance method (IRM). The second method is a reformulation of the Newmark-Beta method. In addition to these two time-domain methods, a whole-engine receptance harmonic balance method (RHBM) is introduced that allows, for the first time, the frequency domain calculation of the periodic vibration response of a real engine. All three methods use modal data calculated from a one-off analysis of the linear part of the engine at zero speed. Simulations on a realistically-sized representative twin-spool engine model with squeeze-film damper bearings provide evidence that the popular Newmark-Beta method can be unreliable for large order nonlinear systems. The excellent correlation between the IRM and RHBM results demonstrates the efficacy of these two complementary tools in the computational analysis of realistic whole-engine models.



Author(s):  
Philip Bonello ◽  
Pham Minh Hai

The computation of the unbalance vibration response of aero-engine assemblies fitted with nonlinear bearings requires the retention of a very large number of modes for reliable results. This renders most previously proposed nonlinear solvers unsuitable for this application. This paper presents three methods for the efficient solution of the problem. The first method is the recently developed impulsive receptance method (IRM). The second method is a reformulation of the Newmark-beta method. In addition to these two time-domain methods, a whole-engine receptance harmonic balance method (RHBM) is introduced that allows, for the first time, the frequency domain calculation of the periodic vibration response of a real engine. All three methods use modal data calculated from a one-off analysis of the linear part of the engine at zero speed. Simulations on a realistically-sized representative twin-spool engine model with squeeze-film damper bearings provide evidence that the popular Newmark-beta method can be unreliable for large-order nonlinear systems. The excellent correlation between the IRM and RHBM results demonstrates the efficacy of these two complementary tools in the computational analysis of realistic whole-engine models.



Author(s):  
P Bonello ◽  
M J Brennan ◽  
R Holmes

The non-linear dynamics of a multimodal flexible rotor running in an unsupported squeeze-film damper (SFD) bearing are investigated analytically and experimentally. The main aim is to assess the ability to predict and explain the non-linear performance using an integrated analytical technique and a standard model for the SFD. A fast harmonic balance method that uses receptance functions is used to determine periodic solutions. A modal-based approach is used for the analysis of the stability and bifurcation of these solutions, as well as the analysis of aperiodic motion. Non-synchronous motion with combination frequencies and subharmonic motions are correctly predicted. It is also shown that such an SFD introduces subcritical superharmonic resonance when it is apparently inactive. It is concluded that, despite the economy in design, the benefits of using an unsupported SFD in a flexible rotor-rigid bearing housing system are dubious.



Sign in / Sign up

Export Citation Format

Share Document