Forced Response of a Flexible Rotor With Squeeze Film Damper Under Parametric Change

Author(s):  
Feng He ◽  
Paul E. Allaire ◽  
Saeid Dousti ◽  
Alexandrina Untaroiu

Squeeze film dampers play an important role in the dynamics of modern turbomachinery by improving vibrational response and stability. The present paper develops an effective tool for evaluating the forced response of these systems under parametric changes. A flexible rotor with multiple masses supported on a squeeze film damper at one end is investigated. The forced response of this asymmetrically supported system is obtained using the harmonic balance method with a predictor-corrector procedure. This response is examined with various parameters including unbalance forces with and without fluid inertia effects, unidirectional loads, stiffness of centering spring of the damper and the gyroscopic effects of the disks. The developed tool predicts the nonlinear jump phenomenon of the damper with large unbalance forces, indicates the present of multiple harmonics within the response with high damper eccentricity and shows the insensitivity of the damper to surrounding gyroscopic variation.


Author(s):  
C-C Siew ◽  
M Hill ◽  
R Holmes ◽  
M Brennan

This paper presents two efficient methods to calculate the unbalance vibration response of a flexible rotor provided with a squeeze-film damper (SFD) with retainer springs. Both methods are iterative and combine the harmonic balance and receptance approaches. The first method, called the modified iteration method (MIM), is suitable for predicting the three-dimensional mode shapes of a concentric SFD-rotor system. The second method, called the modified harmonic balance method (MHBM), is developed to calculate the non-linear vibration response of a flexible shaft provided with either a concentric or eccentric SFD. The system is also investigated experimentally under different conditions. The predictions computed by these methods are compared with experimental measurements and reasonably good agreement is obtained.



Author(s):  
J. W. Lund ◽  
A. J. Smalley ◽  
J. A. Tecza ◽  
J. F. Walton

Squeeze-film dampers are commonly used in gas turbine engines and have been applied successfully in a great many new designs, and also as retrofits to older engines. Of the mechanical components in gas turbines, squeeze-film dampers are the least understood. Their behavior is nonlinear and strongly coupled to the dynamics of the rotor systems on which they are installed. The design of these dampers is still largely empirical, although they have been the subject of a large number of past investigations. To describe recent analytical and experimental work in squeeze-film damper technology, two papers are planned. This abstract outlines the first paper, Part 1, which concerns itself with squeeze-film damper analysis. This paper will describe an analysis method and boundary conditions which have been developed recently for modelling dampers, and in particular, will cover the treatment of finite length, feed and drain holes and fluid inertia effects, the latter having been shown recently to be of great importance in predicting rotor system behavior. A computer program that solves the Reynolds equation for the above conditions will be described and sample calculation results presented.



Author(s):  
Philip Bonello ◽  
Michael J. Brennan ◽  
Roy Holmes

The study of eccentric squeeze film damped rotor dynamic systems has largely concentrated on rigid rotors. In this paper, a newly developed receptance harmonic balance method is used to efficiently analyze a squeeze film damped flexible rotor test rig. The aim of the study is to investigate the influence of damper static eccentricity and unbalance level on cavitation and its resulting effect on the vibration level. By comparing predictions for the rotor vibration levels obtained respectively with, and without, lower pressure limits for the eccentric squeeze film damper model, it is demonstrated that cavitation is promoted by increasing static eccentricity and/or unbalance level. This, in turn, is found to have a profound effect on the predictions for the critical vibration levels, which such dampers are designed to attenuate. The reported findings are backed by experimental evidence from the test rig.



Author(s):  
G Meng ◽  
Y-C Guo ◽  
E. J. Hahn

The influence of fluid inertia on the sudden unbalance response of a flexible rotor supported on centralized and uncentralized squeeze-film dampers is investigated. Whether the rotor is at constant speed or accelerating, it was generally found that fluid inertia shortens the transient process and decreases the transient vibration amplitude. Qualitatively, the effect of fluid inertia is similar to increased damping.



2004 ◽  
Vol 126 (4) ◽  
pp. 855-866 ◽  
Author(s):  
Philip Bonello ◽  
Michael J. Brennan ◽  
Roy Holmes

In this paper, the nonlinear interaction between an eccentric squeeze film damper and an unbalanced flexible rotor is investigated, paying particular attention to the effect of cavitation in the damper. A harmonic balance method that uses the receptance functions of the rotating linear part of the system to determine periodic solutions to the nonlinear problem is used to predict vibration levels in a test rig. By comparing predictions obtained respectively with, and without, lower pressure limits for the squeeze film damper model, it is concluded that cavitation is promoted by increasing static eccentricity and/or unbalance level. This, in turn, is found to have a profound effect on the predictions for the critical vibration levels, which such dampers are designed to attenuate. Experimental results are presented to support the findings.



Author(s):  
P Bonello ◽  
M J Brennan ◽  
R Holmes

The non-linear dynamics of a multimodal flexible rotor running in an unsupported squeeze-film damper (SFD) bearing are investigated analytically and experimentally. The main aim is to assess the ability to predict and explain the non-linear performance using an integrated analytical technique and a standard model for the SFD. A fast harmonic balance method that uses receptance functions is used to determine periodic solutions. A modal-based approach is used for the analysis of the stability and bifurcation of these solutions, as well as the analysis of aperiodic motion. Non-synchronous motion with combination frequencies and subharmonic motions are correctly predicted. It is also shown that such an SFD introduces subcritical superharmonic resonance when it is apparently inactive. It is concluded that, despite the economy in design, the benefits of using an unsupported SFD in a flexible rotor-rigid bearing housing system are dubious.



Author(s):  
Bugra Ertas ◽  
Adolfo Delgado ◽  
Jeffrey Moore

The present work advances experimental results and analytical predictions on the dynamic performance of an integral squeeze film damper (ISFD) for application in a high-speed super-critical CO2 (sCO2) expander. The test campaign focused on conducting controlled orbital motion mechanical impedance testing aimed at extracting stiffness and damping coefficients for varying end seal clearances, excitation frequencies, and vibration amplitudes. In addition to the measurement of stiffness and damping; the testing revealed the onset of cavitation for the ISFD. Results show damping behavior that is constant with vibratory velocity for each end seal clearance case until the onset of cavitation/air ingestion, while the direct stiffness measurement was shown to be linear. Measurable added inertia coefficients were also identified. The predictive model uses an isothermal finite element method to solve for dynamic pressures for an incompressible fluid using a modified Reynolds equation accounting for fluid inertia effects. The predictions revealed good correlation for experimentally measured direct damping, but resulted in grossly overpredicted inertia coefficients when compared to experiments.



Author(s):  
Luis San Andrés

Reynolds equation governs the generation of hydrodynamic pressure in oil lubricated fluid film bearings. The static and dynamic forced response of a bearing is obtained from integration of the film pressure on the bearing surface. For small amplitude journal motions, a linear analysis represents the fluid film bearing reaction forces as proportional to the journal center displacements and velocity components through four stiffness and four damping coefficients. These force coefficients are integrated into rotor-bearing system structural analysis for prediction of the system stability and the synchronous response to imbalance. Fluid inertia force coefficients, those relating reaction forces to journal center accelerations, are routinely ignored because most oil lubricated bearings operate at relatively low Reynolds numbers, i.e., under slow flow conditions. Modern rotating machinery operates at ever increasing surface speeds to deliver more power in smaller size units. Under these operating conditions fluid inertia effects need to be accounted for in the forced response of oil lubricated bearings, as recent experimental test data also reveal. The paper presents a finite element formulation to predict added mass coefficients in oil lubricated bearings by extending a basic formulation that already calculates the bearing stiffness and damping force coefficients. That is, a small amplitude perturbation analysis of the lubrication flow equations keeps the temporal fluid inertia effects and develops a set of equations to obtain the bearing stiffness, damping and inertia force coefficients. The method does not impose on the cost of the original formulation which makes it very attractive for ready implementation in existing software. Predictions of the computational model are benchmarked against archival test data for an oil-lubricated pressure dam bearing supporting large compressors. The comparisons show fluid inertia effects cannot be ignored for operation at high rotor speeds and with small static loads.



Author(s):  
Dongil Shin ◽  
Alan B. Palazzolo ◽  
Xiaomeng Tong

Abstract The Morton Effect (ME) is a synchronous vibration problem in turbomachinery caused by the non-uniform viscous heating around the journal circumference, and its resultant thermal bow and ensuing synchronous vibration. This paper treats the unconventional application of the SFD for the mitigation of ME-induced vibration. Installing a properly designed squeeze film damper (SFD) may change the rotor’s critical speed location, damping and deflection shape, and thereby suppress the vibration caused by the ME. The effectiveness of the SFD on suppressing the ME is tested via linear and nonlinear simulation studies employing a 3D thermo-hydrodynamic (THD) tilting pad journal bearing, and a flexible, Euler beam rotor model. The example rotor model is for a compressor that experimentally exhibited an unacceptable vibration level along with significant journal differential heating near 8,000 rpm. The SFD model includes fluid inertia and is installed on the non-drive end bearing location where the asymmetric viscous heating of the journal is highest. The influence of SFD cage stiffness is evaluated.



Sign in / Sign up

Export Citation Format

Share Document