scholarly journals Detecting Damage in Composites

1998 ◽  
Vol 120 (06) ◽  
pp. 76-77
Author(s):  
Anand Asundi

Research shows that polarimetric optical-fiber sensors embedded in composite laminates can monitor structural integrity and detect damage while the structure remains in service. An experimental arrangement can be created to monitor strain in composite specimens. Light from a linearly polarized helium-neon laser is converted into circularly polarized light using a quarter-wave plate, and is coupled into a polarization-maintaining optical fiber with a microscope objective lens and three-axis positioner. In order to ensure that the intensity modulation was a maximum, the input beam was polarized at 45 degrees to the axes of the fiber. Although this study used polarization-maintaining fibers, similar results also have been seen for standard single-mode fibers.

2018 ◽  
Vol 185 ◽  
pp. 02013 ◽  
Author(s):  
Georgy Basiladze ◽  
Aleksandr Dolgov ◽  
Vladimir Berzhansky ◽  
Andrey Karavainikov ◽  
Anatoly Prokopov

The magnetoplasmonic structure, which is a planar multimode magnetooptical waveguide, 10 μm thick with plasmon resonance SiO2 / Cu coating on the surface is experimentally realized. With the total length of the magnetooptical waveguide 4.6 mm and the length of the SiO2 / Cu coating equal to 3.9 mm, the insertion loss of the structure for TM- and TE-polarized light was 22 and 4 dB, respectively, at a wavelength of 1550 nm. Linearly polarized light was launched into the magneto-optical waveguide using a SMF-28 single-mode optical fiber coupled to the polished input edge of the waveguide. The structure is of interest for use as miniature magnetically controlled modulators of light intensity.


2019 ◽  
Vol 43 (4) ◽  
pp. 528-534
Author(s):  
A.G. Nalimov ◽  
V.V. Kotlyar

A three-level spiral metalens in an amorphous silicon film is designed. The metalens relief consists of two subwavelength gratings with a 220-nm period (for 633 nm wavelength) and depths of 90 and 170 nm. The metalens forms a left-hand circular polarized optical vortex with topological charge 2 when illuminated by a linearly polarized plane wave. The intensity distribution at a distance of 633 nm is in the form of a subwavelength circle, whereas the longitudinal projection of the Pointing vector has negative values on the optical axis, meaning that a backward energy flow occurs. Two subwavelength gratings with different depth act as quarter-wave plates, transforming linearly polarized light into circularly polarized light with a phase delay of (lambda)/2. This metalens combines functionalities of three optical elements: a quarter-wave plate, a spiral phase plate, and a high-NA diffraction metalens (NA close to unity).


2016 ◽  
Vol 14 (5) ◽  
pp. 050604-50608
Author(s):  
Zaihang Yang Zaihang Yang ◽  
Hao Sun Hao Sun ◽  
Tingting Gang Tingting Gang ◽  
Nan Liu Nan Liu ◽  
Jiacheng Li Jiacheng Li ◽  
...  

2011 ◽  
Vol 366 (1565) ◽  
pp. 619-626 ◽  
Author(s):  
Thomas W. Cronin ◽  
Justin Marshall

Natural sources of light are at best weakly polarized, but polarization of light is common in natural scenes in the atmosphere, on the surface of the Earth, and underwater. We review the current state of knowledge concerning how polarization and polarization patterns are formed in nature, emphasizing linearly polarized light. Scattering of sunlight or moonlight in the sky often forms a strongly polarized, stable and predictable pattern used by many animals for orientation and navigation throughout the day, at twilight, and on moonlit nights. By contrast, polarization of light in water, while visible in most directions of view, is generally much weaker. In air, the surfaces of natural objects often reflect partially polarized light, but such reflections are rarer underwater, and multiple-path scattering degrades such polarization within metres. Because polarization in both air and water is produced by scattering, visibility through such media can be enhanced using straightforward polarization-based methods of image recovery, and some living visual systems may use similar methods to improve vision in haze or underwater. Although circularly polarized light is rare in nature, it is produced by the surfaces of some animals, where it may be used in specialized systems of communication.


Author(s):  
Helen F Gleeson ◽  
Tiffany A Wood ◽  
Mark Dickinson

Laser trapping of particles in three dimensions can occur as a result of the refraction of strongly focused light through micrometre-sized particles. The use of this effect to produce laser tweezers is extremely common in fields such as biology, but it is only relatively recently that the technique has been applied to liquid crystals (LCs). The possibilities are exciting: droplets of LCs can be trapped, moved and rotated in an isotropic fluid medium, or both particles and defects can be trapped and manipulated within a liquid crystalline medium. This paper considers both the possibilities. The mechanism of transfer of optical angular momentum from circularly polarized light to small droplets of nematic LCs is described. Further, it is shown that droplets of chiral LCs can be made to rotate when illuminated with linearly polarized light and possible mechanisms are discussed. The trapping and manipulation of micrometre-sized particles in an aligned LC medium is used to provide a measure of local shear viscosity coefficients and a unique test of theory at low Ericksen number in LCs.


Sign in / Sign up

Export Citation Format

Share Document