Three-Component Receptance Coupling Substructure Analysis for Tool Point Dynamics Prediction

2005 ◽  
Vol 127 (4) ◽  
pp. 781-790 ◽  
Author(s):  
Tony L. Schmitz ◽  
G. Scott Duncan

In this paper we present the second generation receptance coupling substructure analysis (RCSA) method, which is used to predict the tool point response for high-speed machining applications. This method divides the spindle-holder-tool assembly into three substructures: the spindle-holder base; the extended holder; and the tool. The tool and extended holder receptances are modeled, while the spindle-holder base subassembly receptances are measured using a “standard” test holder and finite difference calculations. To predict the tool point dynamics, RCSA is used to couple the three substructures. Experimental validation is provided.

2001 ◽  
Vol 123 (4) ◽  
pp. 700-707 ◽  
Author(s):  
Tony L. Schmitz ◽  
Matthew A. Davies ◽  
Michael D. Kennedy

The implementation of high-speed machining for the manufacture of discrete parts requires accurate knowledge of the system dynamics. We describe the application of receptance coupling substructure analysis (RCSA) to the analytic prediction of the tool point dynamic response by combining frequency response measurements of individual components through appropriate connections. Experimental verification of the receptance coupling method for various tool geometries (e.g., diameter and length) and holders (HSK 63A collet and shrink fit) is given. Several experimental results are presented to demonstrate the practical applicability of the proposed method for chatter stability prediction in milling.


Author(s):  
M. M. Rezaei ◽  
M. R. Movahhedy ◽  
M. T. Ahmadian ◽  
H. Moradi

Receptance coupling substructure analysis (RCSA) is extensively used to determine the dynamic response of milling tool at its tip for the purpose of prediction of machining stability. A major challenge in using this approach is the proper modelling of the joint between the substructures and determination of its parameters. In this paper, an inverse RCSA is developed for experimental extraction of tool-holder frequency response function (FRF) including joint parameters. The accuracy and efficiency of this method is evaluated through an analytical investigation. It is shown that the extracted holder FRF can provide a highly accurate prediction of the tool tip FRF. The developed method is used in prediction of tool tip FRF with different values of the tool overhang. The proposed approach is validated through experimental validation.


2014 ◽  
Vol 1006-1007 ◽  
pp. 398-402
Author(s):  
Kun Long Wen ◽  
Hou Jun Qi

Tool point frequency response function (FRF) is the key parameters to predict the milling stability in high-speed milling. Receptance coupling substructure analysis (RCSA) is described to predict the tool point FRF. The major difficulties in RCSA are the identification of joint connection parameters and the obtaining of FRFs of substructure. This paper separation of the milling system into three substructures: the machine-spindle-holder taper, the extended holder-tool shank, and the tool extended portion. Develop the connection model compose of linear and rotational springs and dampers. Determine the substructure FRF by measurement and Euler-Bernoulli beam model. Tool point FRF is obtained by coupling the substructure FRFs through the connection model by RCSA.


Author(s):  
Timothy J. Burns ◽  
Tony L. Schmitz

The chatter-free material removal rate during high-speed machining of aluminum using long, slender endmills is limited by the cutting system dynamics, which changes with the tool length. Traditional stability-lobe diagrams that predict the maximum allowable chip width for a given spindle speed are determined using the tool point frequency response function. A brief review is given of a combined analytical and experimental method that uses receptance coupling substructure analysis (RCSA) for the rapid prediction of the tool-point frequency response as the tool length is varied. The basic idea of the method is to combine the measured direct displacement vs. force receptance (i.e., frequency response) at the free end of the spindle-holder system with analytical expressions for the tool receptances. The method is then used to provide an explanation for the dynamic absorber effect that has been observed in the context of tool-length tuning.


Author(s):  
Rong Yan ◽  
Xiaowei Tang ◽  
Fangyu Peng ◽  
Yuting Li ◽  
Hua Li

The stability lobe diagrams predicted using the tool frequency response function (FRF) at the idle state usually have discrepancies compared with the actual stability cutting boundary. These discrepancies can be attributed to the effect of spindle rotating on the tool FRFs which are difficult to measure at the rotating state. This paper proposes a new tool FRF identification method without using noncontact sensor for the rotating state of the spindle. In this method, the FRFs with impact applied on smooth rotating tool and vibration response tested on spindle head are measured for two tools of different lengths clamped in spindle–holder assembly. Based on those FRFs, an inverse receptance coupling substructure analysis (RCSA) algorithm is developed to identify the FRFs of spindle–holder–partial tool assembly. A finite-element modeling (FEM) simulation is performed to verify the validity of inverse RCSA algorithm. The tool point FRFs at the spindle rotating state are obtained by coupling the FRFs of the spindle–holder–partial tool and the other partial tool. The effects of spindle rotational speed on tool point FRFs are investigated. The cutting experiment demonstrates that this method can accurately identify the tool point FRFs and predict cutting stability region under spindle rotating state.


CIRP Annals ◽  
2000 ◽  
Vol 49 (1) ◽  
pp. 303-308 ◽  
Author(s):  
T.L. Schmitz ◽  
R.R. Donalson

Sign in / Sign up

Export Citation Format

Share Document