Time-Dependent Rheological Behavior of Fluids For Electronics Packaging

2005 ◽  
Vol 127 (4) ◽  
pp. 370-374 ◽  
Author(s):  
X. B. Chen

In electronics packaging, one of the key processes is dispensing fluid materials, such as adhesive, epoxy, encapsulant, onto substrates or printed circuit boards for the purpose of surface mounting or encapsulation. In order to precisely control the dispensing process, the understanding and characterization of the flow behavior of the fluid being dispensed is very important, as the behavior can have a significant influence on the dispensing process. However, this task has proven to be very challenging due to the fact that the fluids for electronics packaging usually exhibit the time-dependent rheological behavior, which has not been well defined in literature. In the paper a study on the characterization of the time-dependent rheological behavior of the fluids for electronics packaging is presented. In particular, a model is developed based on structural theory and then applied to the characterization of the decay and recovery of fluid behavior, which happen in the dispensing process due to the interruption of process. Experiments are carried out to verify the effectiveness of the model developed.

2003 ◽  
Author(s):  
X. B. Chen ◽  
W. J. Zhang ◽  
G. Schoenau ◽  
B. W. Surgenor

To effectively control the dispensing process by which fluids are delivered onto substrates in electronics packaging, one of the key issues is to understand and characterize the flow behavior of the fluids being dispensed. However, this task has proven to be a demanding one as the fluids used for electronics packaging usually exhibit the time-dependent rheological behavior, which has not been well documented in the literature. In this paper, the characterization of time-dependent rheological behavior of fluids is studied. In particular, a model using the structural theory is proposed and applied to the characterization of the decay and recovery of fluid behavior, which are typically encountered in a dispensing process. Experiments are conducted to validate the proposed model.


2014 ◽  
Vol 29 (1) ◽  
pp. 48-57 ◽  
Author(s):  
Baofeng Xu ◽  
Zhidan Lin ◽  
Jiaming Xian ◽  
Zhanpeng Huo ◽  
Ling Cao ◽  
...  

2016 ◽  
Vol 65 (8) ◽  
pp. 1827-1835 ◽  
Author(s):  
Marco Lorenzo Valerio Tagliaferri ◽  
Alessandro Crippa ◽  
Simone Cocco ◽  
Marco De Michielis ◽  
Marco Fanciulli ◽  
...  

2004 ◽  
Vol 126 (4) ◽  
pp. 719-726 ◽  
Author(s):  
Bo-Wun Huang

The dynamic characteristics of a microdrill in the drilling process were investigated in this study. The trend toward higher density printed circuit boards requires smaller holes, down to 0.3 mm in diameter, to be drilled through the board layers. To improve quality, produce a higher production rate, and avoid drill breakage, the dynamic characteristics of the microdrilling process must be studied. A stepped pretwisted beam is used to simulate the microdrill. A moving Winkler-Type elastic foundation is used to approximate the drilling process. A time-dependent vibration model for drilling is presented. The rotating speed, pretwisted angle, and thrust force effects of the microdrill are considered. The numerical analysis indicates that the natural frequency is reduced suddenly as the microdrill moves into a workpiece.


Materials ◽  
2014 ◽  
Vol 7 (6) ◽  
pp. 4555-4566 ◽  
Author(s):  
Waldir Bizzo ◽  
Renata Figueiredo ◽  
Valdelis de Andrade

2021 ◽  
Vol 2094 (4) ◽  
pp. 042066
Author(s):  
A A Dzyubanenko ◽  
G I Korshunov

Abstract The creation of high-tech smart industries is observed in dynamically developing industries, which include the production of electronics and the automotive industry. The concept of “smart manufacturing” is closely related to the concept of cyber-physical systems, which integrates the main elements of digitalization and intellectualization. This concept provides for the continuous improvement of intellectual “cybernetic” resources for the effective management of the “physical” environment considered in this problem area. Improvement of technologies, ensuring high rates of reproducibility and suitability of equipment creates conditions for defect-free production. However, there remain the problems of recognizing patterns represented not by an obvious marriage, but by some not fully defined inconsistency on a set of requirements. The need to disclose uncertainties of this kind is typical for surface mounting technologies for printed circuit boards. The introduction of more and more advanced automatic optical inspections, containing the possibility of introducing intelligent (cybernetic) means, creates conditions for improving the quality of printed circuit boards as a “physical” environment. It is also important to minimize the “human factor”, the presence of which is still used when making decisions on the results of control. In the article, ensuring the rhythm of digital production and increasing the reliability of control in quality management in smart high-tech industries using the example of electronics production.


Sign in / Sign up

Export Citation Format

Share Document