Disjoining Pressure Effects in Ultra-Thin Liquid Films in Micropassages—Comparison of Thermodynamic Theory With Predictions of Molecular Dynamics Simulations

2006 ◽  
Vol 128 (12) ◽  
pp. 1276-1284 ◽  
Author(s):  
V. P. Carey ◽  
A. P. Wemhoff

The concept of disjoining pressure, developed from thermodynamic and hydrodynamic analysis, has been widely used as a means of modeling the liquid-solid molecular force interactions in an ultra-thin liquid film on a solid surface. In particular, this approach has been extensively used in models of thin film transport in passages in micro evaporators and micro heat pipes. In this investigation, hybrid μPT molecular dynamics (MD) simulations were used to predict the pressure field and film thermophysics for an argon film on a metal surface. The results of the simulations are compared with predictions of the classic thermodynamic disjoining pressure model and the Born-Green-Yvon (BGY) equation. The thermodynamic model provides only a prediction of the relation between vapor pressure and film thickness for a specified temperature. The MD simulations provide a detailed prediction of the density and pressure variation in the liquid film, as well as a prediction of the variation of the equilibrium vapor pressure variation with temperature and film thickness. Comparisons indicate that the predicted variations of vapor pressure with thickness for the three models are in close agreement. In addition, the density profile layering predicted by the MD simulations is in qualitative agreement with BGY results, however the exact density profile is dependent upon simulation parameters. Furthermore, the disjoining pressure effect predicted by MD simulations is strongly influenced by the allowable propagation time of injected molecules through the vapor region in the simulation domain. A modified thermodynamic model is developed that suggests that presence of a wall-affected layer tends to enhance the reduction of the equilibrium vapor pressure. However, the MD simulation results imply that presence of a wall layer has little effect on the vapor pressure. Implications of the MD simulation predictions for thin film transport in micro evaporators and heat pipes are also discussed.

Author(s):  
V. P. Carey ◽  
A. P. Wemhoff

The concept of disjoining pressure, developed from thermodynamic and hydrodynamic analysis, has been widely used as a means of modeling the liquid-solid molecular force interactions in an ultra-thin liquid film on a solid surface. In particular, this approach has been extensively used in models of thin film transport in passages in micro evaporators and micro heat pipes. In this investigation, hybrid μPT molecular dynamics (MD) simulations were used to predict the pressure field and film thermophysics for an argon film on a metal surface. The results of the simulations are compared with predictions of the classic thermodynamic disjoining pressure model. The thermodynamic model provides only a prediction of the relation between vapor pressure and film thickness for a specified temperature. The MD simulations provide a detailed prediction of the density and pressure variation in the liquid film, as well as a prediction of the variation of the equilibrium vapor pressure variation with temperature and film thickness. Comparisons indicate that the predicted variations of vapor pressure with thickness for these two models are in close agreement. A modified thermodynamic model is developed which suggests that presence of a wall-affected layer tends to enhance the reduction of the equilibrium vapor pressure. However, the MD simulation results imply that presence of a wall layer has little effect on the vapor pressure. Implications of the MD simulation predictions for thin film transport in micro evaporators and heat pipes are also discussed.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3689
Author(s):  
Run Du ◽  
Anying Zhang ◽  
Zhihua Du ◽  
Xiaoyu Zhang

We used the COMPASS forcefield to perform molecular dynamics (MD) simulation of a mixture composed of three alkanes as the lubricant for the thin-film lubrication. The viscosity of the lubrication film in the non-working state, the final film thickness, and density distribution were investigated. The results reveal that the viscosity error among different initial film thicknesses in the non-working state is within 5%, which confirms the applicability of the model and the forcefield. The viscosity decreases oscillating as temperature increases. Whatever the initial film thickness is, the film thickness change rate with respect to pressure load is almost the same. When pressure increases, the density peaks increase. As the initial film thickness increases, the normalized thicknesses of adsorption and ordered layers decrease. In nanoscale, the density predicted by the MD simulation is higher than the prediction of the Tait equation, even if the adsorption layers is excluded.


Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1088 ◽  
Author(s):  
Yang Kang ◽  
Dunhong Zhou ◽  
Qiang Wu ◽  
Fuyan Duan ◽  
Rufang Yao ◽  
...  

The physical properties—including density, glass transition temperature (Tg), and tensile properties—of polybutadiene (PB), polystyrene (PS) and poly (styrene-butadiene-styrene: SBS) block copolymer were predicted by using atomistic molecular dynamics (MD) simulation. At 100 K, for PB and SBS under uniaxial tension with strain rate ε ˙ = 1010 s−1 and 109 s−1, their stress–strain curves had four features, i.e., elastic, yield, softening, and strain hardening. At 300 K, the tensile curves of the three polymers with strain rates between 108 s−1 and 1010 s−1 exhibited strain hardening following elastic regime. The values of Young’s moduli of the copolymers were independent of strain rate. The plastic modulus of PS was independent of strain rate, but the Young’s moduli of PB and SBS depended on strain rate under the same conditions. After extrapolating the Young’s moduli of PB and SBS at strain rates of 0.01–1 s−1 by the linearized Eyring-like model, the predicted results by MD simulations were in accordance well with experimental results, which demonstrate that MD results are feasible for design of new materials.


2005 ◽  
Vol 899 ◽  
Author(s):  
Byoung-Min Lee ◽  
Hong Koo Baik ◽  
Takahide Kuranaga ◽  
Shinji Munetoh ◽  
Teruaki Motooka

AbstractMolecular dynamics (MD) simulations of atomistic processes of nucleation and crystal growth of silicon (Si) on SiO2 substrate have been performed using the Tersoff potential based on a combination of Langevin and Newton equations. A new set of potential parameters was used to calculate the interatomic forces of Si and oxygen (O) atoms. It was found that the (111) plane of the Si nuclei formed at the surface was predominantly parallel to the surface of MD cell. The values surface energy for (100), (110), and (111) planes of Si at 77 K were calculated to be 2.27, 1.52, and 1.20 J/m2, respectively. This result suggests that, the nucleation leads to a preferred (111) orientation in the poly-Si thin film at the surface, driven by the lower surface energy.


2020 ◽  
Vol 36 (18) ◽  
pp. 4714-4720
Author(s):  
Farzin Sohraby ◽  
Mostafa Javaheri Moghadam ◽  
Masoud Aliyar ◽  
Hassan Aryapour

Abstract Summary Small molecules such as metabolites and drugs play essential roles in biological processes and pharmaceutical industry. Knowing their interactions with biomacromolecular targets demands a deep understanding of binding mechanisms. Dozens of papers have suggested that discovering of the binding event by means of conventional unbiased molecular dynamics (MD) simulation urges considerable amount of computational resources, therefore, only one who holds a cluster or a supercomputer can afford such extensive simulations. Thus, many researchers who do not own such resources are reluctant to take the benefits of running unbiased MD simulation, in full atomistic details, when studying a ligand binding pathway. Many researchers are impelled to be content with biased MD simulations which seek its validation due to its intrinsic preconceived framework. In this work, we have presented a workable stratagem to encourage everyone to perform unbiased (unguided) MD simulations, in this case a protein–ligand binding process, by typical desktop computers and so achieve valuable results in nanosecond time scale. Here, we have described a dynamical binding’s process of an anticancer drug, the dasatinib, to the c-Src kinase in full atomistic details for the first time, without applying any biasing force or potential which may lead the drug to artificial interactions with the protein. We have attained multiple independent binding events which occurred in the nanosecond time scales, surprisingly as little as ∼30 ns. Both the protonated and deprotonated forms of the dasatinib reached the crystallographic binding mode without having any major intermediate state during induction. Availability and implementation The links of the tutorial and technical documents are accessible in the article. Supplementary information Supplementary data are available at Bioinformatics online.


2009 ◽  
Vol 60-61 ◽  
pp. 430-434 ◽  
Author(s):  
Xing Li Zhang ◽  
Zhao Wei Sun ◽  
Guo Qiang Wu

In this article, we select corresponding Tersoff potential energy to build potential energy model and investigate the thermal conductivities of single-crystal carbon thin-film. The equilibrium molecular dynamics (EMD) method is used to calculate the nanometer thin film thermal conductivity of diamond crystal at crystal direction (001), and the non-equilibrium molecular dynamics (NEMD) is used to calculate the nanometer thin film thermal conductivity of diamond crystal at crystal direction (111). The results of calculations demonstrate that the nanometer thin film thermal conductivity of diamond crystal is remarkably lower than the corresponding bulk experimental data and increase with increasing the film thickness, and the nanometer thin film thermal conductivity of diamond crystal relates to film thickness linearly in the simulative range. The nanometer thin film thermal conductivity also demonstrates certain regularity with the change of temperature. This work shows that molecular dynamics, applied under the correct conditions, is a viable tool for calculating the thermal conductivity of nanometer thin films.


Volume 4 ◽  
2004 ◽  
Author(s):  
Aaron P. Wemhoff ◽  
Van P. Carey

Surface tension determination of liquid-vapor interfaces of polyatomic fluids using traditional methods has shown to be difficult due to the requirement of evaluating complex intermolecular potentials. However, analytical techniques have recently been developed that determine surface tension solely by means of the characteristics of the interfacial region between the bulk liquid and vapor regions. A post-simulation application of the excess free energy density integration (EFEDI) method was used for analysis of the resultant density profile of molecular dynamics (MD) simulations of argon using a simple Lennard-Jones potential and diatomic nitrogen using a two-center Lennard-Jones potential. MD simulations were also run for an approximation of nitrogen using the simple Lennard-Jones potential. In each MD simulation, a liquid film was initialized between vapor regions and NVE-type simulations were run to equilibrium. The simulation domain was divided into bins across the interfacial region for fluid density collection, and the resultant interfacial region density profile was used for surface tension evaluation. Application of the EFEDI method to these MD simulation results exhibited good approximations to surface tension as a function of temperature for both a simple and complex potential.


Author(s):  
Joanna E. Bechtel ◽  
David B. Bogy

The lubricant applied to the disk in a hard drive is a critical component for head-disk interface reliability. In Heat Assisted Magnetic Recording (HAMR), the heat supplied to the disk by the laser will add new thermal considerations to lubricant performance. Investigations into how the lubricant behaves at the small time and length scales seen in HAMR systems need to be conducted numerically. Published works on HAMR lubricant modeling have considered only the van der Waals contribution to disjoining pressure, commonly called the dispersive component, and do not consider the film thickness dependence of viscosity. However, lubricants with reactive end groups such as Fomblin Zdol are widely used, and such simple disjoining pressure and viscosity models do not capture certain lubricant behavior. We have developed a simulation tool that incorporates film thickness dependencies of viscosity and polar and dispersive disjoining pressure into a continuum lubrication model. We investigate the effect of initial thickness on lubricant flow and evaporation under HAMR write conditions considering both components of disjoining pressure and thin-film viscosity. Simulation results indicate the effect of including polar disjoining pressure depends on the initial lubricant thickness. The inclusion of viscosity thickness dependence does not affect simulation results under scanning laser conditions but will be important in reflow simulations.


Author(s):  
Carlos J. Gomes ◽  
Marcela Madrid ◽  
Cristina H. Amon

The in-plane thermal conductivity of thin silicon films is predicted using equilibrium molecular dynamics, the Stillinger-Weber potential and the Green-Kubo relationship. Film thicknesses range from 2 to 200 nm. Periodic boundary conditions are used in the directions parallel to the thin film surfaces. Two different strategies are evaluated to treat the atoms on the surfaces perpendicular to the thin film direction: adding four layers of atoms kept frozen at their crystallographic positions, or restraining the atoms near the surfaces with a repulsive potential. We show that when the thin-film thickness is smaller than the phonon mean free path, the predictions of the in-plane thermal conductivity at 1000K differ significantly depending on the potential applied to the atoms near the surfaces. In this limit, the experimentally observed trend of decreasing thermal conductivity with decreasing film thickness is predicted when the surface atoms are subject to a repulsive potential in addition to the Stillinger-Weber potential, but not when they are limited by frozen atoms.


Sign in / Sign up

Export Citation Format

Share Document