Computational Fluid Dynamics Analysis of Turbulent Flow Within a Mechanical Seal Chamber

2006 ◽  
Vol 129 (1) ◽  
pp. 120-128 ◽  
Author(s):  
Zhaogao Luan ◽  
M. M. Khonsari

Turbulent flow inside the seal chamber of a pump operating at high Reynolds number is investigated. The K−ε turbulence model posed in cylindrical coordinates was applied for this purpose. Simulations are performed using the fractional approach method. The results of the computer code are verified by using the FLUENT and by comparing to published results for turbulent Taylor Couette flow. Numerical results of four cases including two rotational speeds with four flush rates are reported. Significant difference between the laminar and the turbulence flow in the seal chamber is predicted. The behavior of the turbulent flows with very high Reynolds number was also investigated. The physical and practical implications of the results are discussed.

2019 ◽  
Vol 864 ◽  
pp. 327-347 ◽  
Author(s):  
Amirreza Rastegari ◽  
Rayhaneh Akhavan

The drag reduction characteristics and sustainability bounds of superhydrophobic (SH) surfaces in high Reynolds number turbulent flows are investigated using results from direct numerical simulation (DNS) and scaling-law analysis. The DNS studies were performed, using lattice Boltzmann methods, in turbulent channel flows at bulk Reynolds numbers of $Re_{b}=3600$ ($Re_{\unicode[STIX]{x1D70F}_{0}}\approx 222$) and $Re_{b}=7860$ ($Re_{\unicode[STIX]{x1D70F}_{0}}\approx 442$) with SH longitudinal microgrooves or SH aligned microposts on the walls. Surface microtexture geometrical parameters corresponding to microgroove widths or micropost spacings of $4\lesssim g^{+0}\lesssim 128$ in base flow wall units and solid fractions of $1/64\leqslant \unicode[STIX]{x1D719}_{s}\leqslant 1/2$ were investigated at interface protrusion angles of $\unicode[STIX]{x1D703}_{p}=0^{\circ }$ and $\unicode[STIX]{x1D703}_{p}=-30^{\circ }$. Analysis of the governing equations and DNS results shows that the magnitude of drag reduction is not only a function of the geometry and size of the surface microtexture in wall units, but also the Reynolds number of the base flow. A Reynolds number independent measure of drag reduction can be constructed by parameterizing the magnitude of drag reduction in terms of the friction coefficient of the base flow and the shift, $(B-B_{0})$, in the intercept of a logarithmic law representation of the mean velocity profile in the flow with SH walls compared to the base flow, where $(B-B_{0})$ is Reynolds number independent. The scaling laws for $(B-B_{0})$, in terms of the geometrical parameters of the surface microtexture in wall units, are presented for SH longitudinal microgrooves and aligned microposts. The same scaling laws are found to also apply to liquid-infused (LI) surfaces as long as the viscosity ratios are large, $N\equiv \unicode[STIX]{x1D707}_{o}/\unicode[STIX]{x1D707}_{i}\gtrsim 10$. These scaling laws, in conjunction with the parametrization of drag reduction in terms of $(B-B_{0})$, allow for a priori prediction of the magnitude of drag reduction with SH or LI surfaces in turbulent flow at any Reynolds number. For the most stable of these SH surface microtextures, namely, longitudinal microgrooves, the pressure stability bounds of the SH surface under the pressure loads of turbulent flow are investigated. It is shown that the pressure stability bounds of SH surfaces are also significantly curtailed with increasing Reynolds number of the flow. Using these scaling laws, the narrow range of SH surface geometrical parameters which can yield large drag reduction as well as sustainability in high Reynolds number turbulent flows is identified.


Author(s):  
Yan Jin

Abstract The turbulent flow in a compressor cascade is calculated by using a new simulation method, i.e., parameter extension simulation (PES). It is defined as the calculation of a turbulent flow with the help of a reference solution. A special large-eddy simulation (LES) method is developed to calculate the reference solution for PES. Then, the reference solution is extended to approximate the exact solution for the Navier-Stokes equations. The Richardson extrapolation is used to estimate the model error. The compressor cascade is made of NACA0065-009 airfoils. The Reynolds number 3.82 × 105 and the attack angles −2° to 7° are accounted for in the study. The effects of the end-walls, attack angle, and tripping bands on the flow are analyzed. The PES results are compared with the experimental data as well as the LES results using the Smagorinsky, k-equation and WALE subgrid models. The numerical results show that the PES requires a lower mesh resolution than the other LES methods. The details of the flow field including the laminar-turbulence transition can be directly captured from the PES results without introducing any additional model. These characteristics make the PES a potential method for simulating flows in turbomachinery with high Reynolds numbers.


AIAA Journal ◽  
2010 ◽  
Vol 48 (6) ◽  
pp. 1130-1140 ◽  
Author(s):  
Ya'eer Kidron ◽  
Yair Mor-Yossef ◽  
Yuval Levy

Author(s):  
Joseph W. Hall ◽  
Charles E. Tinney ◽  
Julie M. Ausseur ◽  
Jeremy T. Pinier ◽  
Andre M. Hall ◽  
...  

2013 ◽  
Vol 721 ◽  
pp. 58-85 ◽  
Author(s):  
Kengo Deguchi ◽  
Philip Hall ◽  
Andrew Walton

AbstractThe recently understood relationship between high-Reynolds-number vortex–wave interaction theory and computationally generated self-sustaining processes provides a possible route to an understanding of some of the underlying structures of fully turbulent flows. Here vortex–wave interaction (VWI) theory is used in the long streamwise wavelength limit to continue the development found at order-one wavelengths by Hall & Sherwin (J. Fluid Mech., vol. 661, 2010, pp. 178–205). The asymptotic description given reduces the Navier–Stokes equations to the so-called boundary-region equations, for which we find equilibrium states describing the change in the VWI as the wavelength of the wave increases from $O(h)$ to $O(Rh)$, where $R$ is the Reynolds number and $2h$ is the depth of the channel. The reduced equations do not include the streamwise pressure gradient of the perturbation or the effect of streamwise diffusion of the wave–vortex states. The solutions we calculate have an asymptotic error proportional to ${R}^{- 2} $ when compared to the full Navier–Stokes equations. The results found correspond to the minimum drag configuration for VWI states and might therefore be of relevance to the control of turbulent flows. The key feature of the new states discussed here is the thickening of the critical layer structure associated with the wave part of the flow to completely fill the channel, so that the roll part of the flow is driven throughout the flow rather than as in Hall & Sherwin as a stress discontinuity across the critical layer. We identify a critical streamwise wavenumber scaling, which, when approached, causes the flow to localize and take on similarities with computationally generated or experimentally observed turbulent spots. In effect, the identification of this critical wavenumber for a given value of the assumed high Reynolds number fixes a minimum box length necessary for the emergence of localized structures. Whereas nonlinear equilibrium states of the Navier–Stokes equations are thought to form a backbone on which turbulent flows hang, our results suggest that the localized states found here might play a related role for turbulent spots.


2005 ◽  
Vol 532 ◽  
pp. 53-62 ◽  
Author(s):  
AXEL MERLE ◽  
DOMINIQUE LEGENDRE ◽  
JACQUES MAGNAUDET

Author(s):  
Noriyuki Furuichi ◽  
Yoshiya Terao ◽  
Shinichi Nakao ◽  
Keiji Fujita ◽  
Kazuo Shibuya

The discharge coefficients of the throat tap flow nozzle based on ASME PTC 6 are measured in wide Reynolds number range from Red=5.8×104 to Red=1.4×107. The nominal discharge coefficient (the discharge coefficient without tap) is determined from the discharge coefficients measured for different tap diameters. The tap effects are correctly obtained by subtracting the nominal discharge coefficient from the discharge coefficient measured. Finally, by combing the nominal discharge coefficient and the tap effect determined in three flow regions, that is, laminar, transitional and turbulent flow region, the new equations of the discharge coefficient are proposed in three flow regions.


Sign in / Sign up

Export Citation Format

Share Document