Localized Heat Transfer in Buoyancy Driven Convection in Open Cavities
Background. An experimental study of buoyancy driven convection heat transfer in an open cavity was conducted. Method of Approach. Test cavities were constructed with calorimeter plates bonded to Styrofoam insulation. The inside of the cavities was heated and then exposed to ambient air for approximately thirty minutes. Different size cavities were examined at inclination angles of 0, 45, and 90deg. The heat transfer coefficient was determined from an energy balance on each calorimeter plate. The cavity’s plate temperatures varied spatially due to the transient nature of the tests. A parameter describing the nonisothermal cavity wall temperature variation was defined in order to compare with isothermal cavity heat transfer results. Results. Results showed that the cavity Nusselt number, based on a cavity averaged temperature, was insensitive to the transient development of nonisothermal conditions within the cavity. Comparison of cavity-average Nusselt number for the current study, where the Rayleigh number ranged from 5×106 to 2×108, to data from the literature showed good agreement. Cavity-average Nusselt number relations for inclination angles of 0, 45, and 90deg in the form of NuH,cav=CRa1∕3 resulted in coefficients of 0.091, 0.105, 0.093, respectively. The 45deg inclination angle orientation yielded the largest Nusselt numbers, which was similar to previous literature results. Trends in the local plate Nusselt numbers were examined and found similar to data from the literature.