A Boundary Element Method for Evaluation of the Effective Thermal Conductivity of Packed Beds

2006 ◽  
Vol 129 (3) ◽  
pp. 363-371 ◽  
Author(s):  
Jianhua Zhou ◽  
Aibing Yu ◽  
Yuwen Zhang

The problem of evaluating the effective thermal conductivity of random packed beds is of great interest to a wide-range of engineers and scientists. This study presents a boundary element model (BEM) for the prediction of the effective thermal conductivity of a two-dimensional packed bed. The model accounts for four heat transfer mechanisms: (1) conduction through the solid; (2) conduction through the contact area between particles; (3) radiation between solid surfaces; and (4) conduction through the fluid phase. The radiation heat exchange between solid surfaces is simulated by the net-radiation method. Two regular packing configurations, square array and hexagonal array, are chosen as illustrative examples. The comparison between the results obtained by the present model and the existing predictions are made and the agreement is very good. The proposed BEM model provides a new tool for evaluating the effective thermal conductivity of the packed beds.

2003 ◽  
Vol 125 (4) ◽  
pp. 693-702 ◽  
Author(s):  
G. Buonanno ◽  
A. Carotenuto ◽  
G. Giovinco ◽  
N. Massarotti

The upper and lower bounds of the effective thermal conductivity of packed beds of rough spheres are evaluated using the theoretical approach of the elementary cell for two-phase systems. The solid mechanics and thermal problems are solved and the effects of roughness and packed bed structures are also examined. The numerical solution of the thermal conduction problem through the periodic regular arrangement of steel spheroids in air is determined using the Finite Element Method. The numerical results are compared with those obtained from an experimental apparatus designed and built for this purpose.


Author(s):  
G. Buonanno ◽  
A. Carotenuto ◽  
G. Giovinco ◽  
L. Vanoli

Thermal contact conductance is an important parameter in a wide range of thermal phenomena, and consequently a large number of experimental, numerical and statistical investigations have been carried out in literature. In the present paper an analysis of thermal contact resistance is carried out to predict heat transfer between spherical rough surfaces in contact, by means of a statistical approach. The micro-geometry of the surface is described through a probabilistic model based on the peak height variability and invariant asperity curvature radius. The numerical model has been applied to evaluate the effective thermal conductivity of packed beds of steel spheroids and validated through the comparison with the experimental data obtained by means of an apparatus designed and build up for this purpose.


Author(s):  
M. Bahrami ◽  
M. M. Yovanovich ◽  
J. R. Culham

New compact analytical models for predicting the effective thermal conductivity of regularly packed beds of rough spheres immersed in a stagnant gas are developed. Existing models do not consider either the influence of the spheres roughness or the rarefaction of the interstitial gas on the conductivity of the beds. Contact mechanics and thermal analyses are performed for uniform size spheres packed in SC and FCC arrangements and the results are presented in the form of compact relationships. The present model accounts for the thermophysical properties of spheres and the gas, contact load, spheres diameter, spheres roughness and asperities slope, and temperature and pressure of the gas. The present model is compared with experimental data for SC and FCC packed beds and good agreement is observed. The experimental data cover a wide range of the contact load, surface roughness, interstitial gas type, and gas temperature and pressure.


2012 ◽  
Vol 727-728 ◽  
pp. 1818-1823
Author(s):  
G.F.M.V. Souza ◽  
R. Béttega ◽  
R.F. Miranda ◽  
O.S.H. Mendoza ◽  
M.A.S. Barrozo

Several applications in chemical industry use randomly packed bed of particles, such as particulate separation systems, chemical reactors or fixed bed drying. Fluid dynamic behavior, heat and mass transfer, in addition to structural properties of the bed are fundamental issues to design of these processes. Several studies about heat transfer in packed beds aiming drying application have been performed in order to contribute with the process. Seeds drying temperature is especially important for the seeds quality indices and must be carefully controlled in drying process. In this paper temperature profiles experimentally obtained in a packed bed composed by soybean seeds are presented and discussed. Axial profiles of temperature were applied for obtaining effective thermal conductivity following previous studies from literature. The results indicate that thermal homogeneity can be achieved inside the bed for controlled air flow conditions. Axial effective thermal conductivity presented results in agreement with previous studies from literature.


Author(s):  
F. I. Molina-Herrera ◽  
C. O. Castillo-Araiza ◽  
H. Jiménez-Islas ◽  
F. López-Isunza

Abstract This is a theoretical study about the influence of turbulence on momentum and heat transport in a packed-bed with low tube to particle diameter ratio. The hydrodynamics is given here by the time-averaged Navier-Stokes equations including Darcy and Forchheimer terms, plus a κ-ε two-equation model to describe a 2D pseudo-homogeneous medium. For comparison, an equivalent conventional flow model has also been tested. Both models are coupled to a heat transport equation and they are solved using spatial discretization with orthogonal collocation, while the time derivative is discretized by an implicit Euler scheme. We compared the prediction of radial and axial temperature observations from a packed-bed at particle Reynolds numbers (Rep) of 630, 767, and 1000. The conventional flow model uses effective heat transport parameters: wall heat transfer coefficient (hw) and thermal conductivity (keff), whereas the turbulent flow model includes a turbulent thermal conductivity (kt), estimating hw via least-squares with Levenberg-Marquardt method. Although predictions of axial and radial measured temperature profiles with both models show small differences, the calculated radial profiles of the axial velocity component are very different. We demonstrate that the model that includes turbulence compares well with mass flux measurements at the packed-bed inlet, yielding an error of 0.77 % in mass flux balance at Rep = 630. We suggest that this approach can be used efficiently for the hydrodynamics characterization and design and scale-up of packed beds with low tube to particle diameter ratio in several industrial applications.


2020 ◽  
Vol 219 ◽  
pp. 115584 ◽  
Author(s):  
Nicolin Govender ◽  
Paul W. Cleary ◽  
Mehran Kiani-Oshtorjani ◽  
Daniel N. Wilke ◽  
Chuan-Yu Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document