Effects of Thresholding Techniques on μCT-Based Finite Element Models of Trabecular Bone

2006 ◽  
Vol 129 (4) ◽  
pp. 481-486 ◽  
Author(s):  
Chi Hyun Kim ◽  
Henry Zhang ◽  
George Mikhail ◽  
Dietrich von Stechow ◽  
Ralph Müller ◽  
...  

Microimaging based finite element analysis is widely used to predict the mechanical properties of trabecular bone. The choice of thresholding technique, a necessary step in converting grayscale images to finite element models, can significantly influence the predicted bone volume fraction and mechanical properties. Therefore, we investigated the effects of thresholding techniques on microcomputed tomography (micro-CT) based finite element models of trabecular bone. Three types of thresholding techniques were applied to 16-bit micro-CT images of trabecular bone to create three different models per specimen. Bone volume fractions and apparent moduli were predicted and compared to experimental results. In addition, trabecular tissue mechanical parameters and morphological parameters were compared among different models. Our findings suggest that predictions of apparent mechanical properties and structural properties agree well with experimental measurements regardless of the choice of thresholding methods or the format of micro-CT images.

2006 ◽  
Vol 321-323 ◽  
pp. 1070-1073
Author(s):  
Ye Yeon Won ◽  
Myong Hyun Baek ◽  
Wen Quan Cui ◽  
Kwang Kyun Kim

This study investigates micro-structural and mechanical properties of trabecular bone in human femoral head with and without osteoporosis using a micro-CT and a finite element model. 15 cored trabecular bone specimens with 20 of diameter were obtained from femoral heads with osteoporosis resected for total hip arthroplasty, and 5 specimens were removed from femoral head of cadavers, which has no history of musculoskeletal diseases. A high-resolution micro-CT system was used to scan each specimen to obtain histomorphometry indexes. Based on the micro-images, a FE-model was created to determine mechanical property indexes. While the non-osteoporosis group had increases the trabecular thickness, the bone volume, the bone volume fraction, the degree of anisotropy and the trabecular number compared with those of osteoporotic group, the non-osteoporotic group showed decreases in trabecular separation and structure model index. Regarding the mechanical property indexes, the reaction force and the Young's modulus were lower in the osteoporotic group than in non-osteoporotic group. Our data shows salient deteriorations in trabecular micro-structural and mechanical properties in human femoral head with osteoporosis.


2015 ◽  
Vol 137 (1) ◽  
Author(s):  
Arnav Sanyal ◽  
Joanna Scheffelin ◽  
Tony M. Keaveny

Prior multiaxial strength studies on trabecular bone have either not addressed large variations in bone volume fraction and microarchitecture, or have not addressed the full range of multiaxial stress states. Addressing these limitations, we utilized micro-computed tomography (μCT) based nonlinear finite element analysis to investigate the complete 3D multiaxial failure behavior of ten specimens (5 mm cube) of human trabecular bone, taken from three anatomic sites and spanning a wide range of bone volume fraction (0.09–0.36), mechanical anisotropy (range of E3/E1 = 3.0–12.0), and microarchitecture. We found that most of the observed variation in multiaxial strength behavior could be accounted for by normalizing the multiaxial strength by specimen-specific values of uniaxial strength (tension, compression in the longitudinal and transverse directions). Scatter between specimens was reduced further when the normalized multiaxial strength was described in strain space. The resulting multiaxial failure envelope in this normalized-strain space had a rectangular boxlike shape for normal–normal loading and either a rhomboidal boxlike shape or a triangular shape for normal-shear loading, depending on the loading direction. The finite element data were well described by a single quartic yield criterion in the 6D normalized-strain space combined with a piecewise linear yield criterion in two planes for normal-shear loading (mean error ± SD: 4.6 ± 0.8% for the finite element data versus the criterion). This multiaxial yield criterion in normalized-strain space can be used to describe the complete 3D multiaxial failure behavior of human trabecular bone across a wide range of bone volume fraction, mechanical anisotropy, and microarchitecture.


2002 ◽  
Vol 35 (8) ◽  
pp. 1091-1099 ◽  
Author(s):  
Laurent Pothuaud ◽  
Bert Van Rietbergen ◽  
Lis Mosekilde ◽  
Olivier Beuf ◽  
Pierre Levitz ◽  
...  

2011 ◽  
Vol 278 (1721) ◽  
pp. 3067-3073 ◽  
Author(s):  
Michael Doube ◽  
Michał M. Kłosowski ◽  
Alexis M. Wiktorowicz-Conroy ◽  
John R. Hutchinson ◽  
Sandra J. Shefelbine

Many bones are supported internally by a latticework of trabeculae. Scaling of whole bone length and diameter has been extensively investigated, but scaling of the trabecular network is not well characterized. We analysed trabecular geometry in the femora of 90 terrestrial mammalian and avian species with body masses ranging from 3 g to 3400 kg. We found that bone volume fraction does not scale substantially with animal size, while trabeculae in larger animals' femora are thicker, further apart and fewer per unit volume than in smaller animals. Finite element modelling indicates that trabecular scaling does not alter the bulk stiffness of trabecular bone, but does alter strain within trabeculae under equal applied loads. Allometry of bone's trabecular tissue may contribute to the skeleton's ability to withstand load, without incurring the physiological or mechanical costs of increasing bone mass.


Author(s):  
William Zaylor ◽  
Betty Sindelar ◽  
John R. Cotton

Currently about 10 million Americans report signs and symptoms of TMJ dysfunction. One form of treatment for TMJ dysfunction is dental splints which reorient the jaw during mastication. This presumably changes the direction, magnitude and location of mechanical loads on the mandibular condyle of the temporomandibular joint (TMJ). The precise nature of load changes and their effect on the underlying condylar trabecular bone have not been reported.


Bone ◽  
2005 ◽  
Vol 36 (3) ◽  
pp. 480-488 ◽  
Author(s):  
Sandra J. Shefelbine ◽  
Ulrich Simon ◽  
Lutz Claes ◽  
Andreas Gold ◽  
Yankel Gabet ◽  
...  

2000 ◽  
Author(s):  
Mark J. Eichler ◽  
Chi Hyun Kim ◽  
Ralph Müller ◽  
X. Edward Guo

Abstract Age-related bone fractures are mostly influenced by trabecular bone sites. Trabecular bone constantly adapts its bone volume fraction (BV/TV) and orientation, and thus its mechanical properties, to mechanical usage. Therefore, understanding the trabecular bone adaptation process and its consequences will contribute to the better understanding of the etiology of age-related fractures. Micro-computed tomography (micro-CT) is a relatively new method to quantify the complex three-dimensional (3D) trabecular bone architecture [1,2]. Finite element computational studies can be performed on these 3D microstructural images by converting each image voxel into an element [3,4,5]. Image thresholding techniques to segment bone voxels from bone marrow voxels have a major impact on the results of these models. However, the influence of different types of thresholding techniques on the mechanical properties of bone has not been examined carefully.


2010 ◽  
Vol 43 (5) ◽  
pp. 953-960 ◽  
Author(s):  
Esther Cory ◽  
Ara Nazarian ◽  
Vahid Entezari ◽  
Vartan Vartanians ◽  
Ralph Müller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document