Natural Convection in Shallow, Horizontal Air Layers Encountered in Electronic Cooling

1995 ◽  
Vol 117 (4) ◽  
pp. 307-316 ◽  
Author(s):  
Elias Papanicolaou ◽  
Sridhar Gopalakrishna

A numerical study of natural convection induced in a horizontal, enclosed air layer due to a discrete, constant heat flux source at the bottom surface is carried out in this paper. The nature of the transition from conduction to a cellular convection regime for this discrete-heating case is characterized. Multiple sources are also considered and the results are compared to those for a single source. The governing equations of continuity, momentum, and energy conservation are formulated for a two-dimensional layer. The important parameters are the overall aspect ratio (length/height of the layer), the ratio of source length to total length, and the Rayleigh number. The effect of varying these parameters is investigated, and heat transfer correlations are derived, for both single and multiple sources, in the form Nus ∝ C (Ra)c>, where Nus is the Nusselt number averaged over each source. The value of C is found to depend strongly on the aspect ratio and the source size. Based on the heat transfer results, the tendency of each geometric configuration to fully attain transition to the convection regime is evaluated. This can provide guidelines for maintaining certain critical dimensions that best exploit natural convection effects, in systems where fan-driven cooling is not available.

Author(s):  
Jingde Zhao ◽  
Jorge L. Alvarado ◽  
Ehsan M. Languri ◽  
Chao Wang

Heat transfer analysis of a high aspect ratio thermal energy storage (TES) device was carried out numerically. The three dimensional numerical study was performed to understand the heat transfer enhancement which results from internal natural convection in a high aspect ratio vertical unit. Octadecane was used as phase change material (PCM) inside TES system, which consisted of six corrugated panels filled with PCM. Each panel had a total of 6 tall cavities filled with PCM, which were exposed to external flow in a concentric TES system. Unlike traditional concentric-type TES devices where heat transfer by conduction is the dominant heat transport mechanism, the high aspect ratio TES configuration used in the study helped promote density-gradient based internal convection mechanism. The numerical model was solved based on the finite volume method, which captured the whole transient heat transfer process effectively. The time-dependent temperature profiles of the PCM inside a single TES panel are compared with the experimental results for two cases. Numerical and experimental results of the two cases showed a reasonable agreement. Furthermore, convection cells were formed and sustained when the PCM melted within the space between the solid core and the walls. The promising results of this numerical study illustrate the importance of internal natural convection on the speed of the PCM melting (charging) process.


1970 ◽  
Vol 39 (1) ◽  
pp. 30-39 ◽  
Author(s):  
Tamanna Sultana ◽  
Sumon Saha ◽  
Goutam Saha ◽  
Md Quamrul Islam

A numerical study of natural convection in a tilted square cavity with heated horizontal base and cold upper wall is presented. The present study is based in such a configuration where the top triangular wall of two different shapes is maintained at a constant low temperature. A constant heat flux source whose length is 20% of the total length of the cavity is discretely embedded at the left corner of the bottom wall. The remaining part of the bottom wall and the two sidewalls are considered to be adiabatic. The study includes computations for inclination angles of the cavity from 0° to 45°, where the Grashof number, Gr varies from 103 to 106. The Penalty finite element method has been used to see the effects of inclination angles and Grashof number on heat transfer process in the cavity. Results are presented in the form of streamline and isotherm plots as well as the variation of the average Nusselt number. Observation shows the significant effect of different triangular top surface on the heat transfer characteristics at the higher Grashof number and inclination angle. Keywords: Natural convection, Penalty finite element, Nusselt number, Isoflux heating. doi:10.3329/jme.v39i1.1831 Journal of Mechanical Engineering, vol. ME39, No. 1, June 2008 30-39  


2019 ◽  
Vol 392 ◽  
pp. 200-217
Author(s):  
Abdel Illah Amrani ◽  
Nadia Dihmani ◽  
Samir Amraqui ◽  
Ahmed Mezrhab

In the building, roof is a major element contributing to the space thermal load. Due to its importance, this component has been widely studies in the literature and under various climatic conditions. In this paper, a numerical study was carried out for the coupling of natural convection and surface radiation heat transfer in a triangular shaped roof with eave (Gabel roof) for cold climates. The numerical solution is obtained using a finite volume method based on the SIMPLER algorithm for the treatment of velocity-pressure coupling. Concerning the radiation exchange, the working fluid (air) is assumed to be transparent, so only the solid surfaces (assumed diffuse-grey) give a contribute to such exchange. Governing parameters on heat transfer and flow fields are Rayleigh number (Ra), aspect ratio (A) and eave lengths (e*). Numerical results are obtained to display the isotherms, streamlines and the heat transfer rate in terms of local and average Nusselt numbers. We found that the production of several circular cells is proportional to the decrease of aspect ratio and the increase of Rayleigh number. In addition, the heat transfer is much more pronounced in the presence of thermal radiation.


1989 ◽  
Vol 111 (4) ◽  
pp. 909-915 ◽  
Author(s):  
J. A. Khan ◽  
R. Kumar

A numerical investigation has been conducted to evaluate the effects of diameter ratio and aspect ratio in natural convection of gases within vertical annuli. The inner cylinder is maintained at uniform heat flux and the outer cylinder at constant temperature. The horizontal top and bottom walls are insulated. Detailed results of heat transfer rate, temperature, and velocity fields have been obtained for 1 ≤ κ ≤ 15, 1 ≤ A ≤ 10, and 100 < RaL* < 107. The inner wall temperature is a function of diameter ratio and aspect ratio. The heat transfer results have been compared with those for isothermal heating, and have been found to be higher. The inner diameter is seen to be the appropriate length scale for high Rayleigh number flows and/or high radius ratios, and the radius ratio effect on heat transfer is seen to be insignificant for radius ratios greater than 10. The heat transfer results based on the inner diameter are in very good agreement with published experimental results, although these experiments were conducted for very high aspect ratio. Heat transfer correlations are provided.


1993 ◽  
Vol 115 (1) ◽  
pp. 149-157 ◽  
Author(s):  
D. Angirasa ◽  
R. L. Mahajan

A numerical study of two-dimensional fluid flow and heat transfer by natural convection from L-shaped corners is reported. The vertical side is hot isothermal, and the horizontal side is either adiabatic or cold isothermal at the ambient temperature. The effect of changing the aspect ratio (length of the horizontal side/height of the vertical side) on the transport from the vertical side is studied in detail. It is shown that when the length of the horizontal wall is of the order of the boundary layer thickness on the vertical side, the entrainment flow as well as the boundary layer flow are influenced significantly by a change in the length of the horizontal surface. The heat transfer rate from the vertical side also decreases with increasing length. For values of the aspect ratio > 0.3 (Pr = 0.7), the Nusselt number for the vertical side of the L-shaped body is about 10 percent less than that for the vertical plate. As the length of the horizontal plate increases further, the flow in the outer region undergoes a significant change, but the heat transfer from the vertical heated leg remains unaffected. As the aspect ratio approaches = 2.0, increasing the length of the horizontal side ceases to have any further influence on the entire flow field. Comparison of Nusselt number with past experimental data for air shows good agreement. Finally, Nusselt number correlations in the range of Rayleigh number from 105 to 109 are presented.


1995 ◽  
Vol 117 (3) ◽  
pp. 173-180 ◽  
Author(s):  
E. K. Lakhal ◽  
E. Bilgen ◽  
P. Vasseur

Steady heat transfer by natural convection and conduction is numerically studied in passive solar collector systems consisting of a massive wall with honeycomb structure and without vents. The boundary conditions are constant heat flux on the wall and fins, isothermal on the vertical bounding sides, and adiabatic on the horizontal sides. The governing parameters are the Rayleigh number (106 ≤ Ra ≤ 5 × 109), the aspect ratio of the enclosures (0.4 ≤ A = H′/L′ ≤ 1.4), the dimensionless lengths of the fins (0 ≤ B = l′/Ll′ ≤ 1), the aspect ratio of the microcavities (0.05 ≤ C = h′/L′ ≤ 1), the wall thickness (0.008 ≤ w = w′/L′ ≤ 0.033). The fin thickness (e = e′/H′ = 0.06) and the Prandtl number (Pr = 0.72) were constant, and the conductivity ratio was variable (10−4 ≤ kr ≤ 5 × 106). Local and average Nusselt numbers along the long sides are calculated as a function of various parameters. Streamlines and isotherms are produced. Effects of various parameters on the heat transfer are examined and heat transfer correlations are derived.


2019 ◽  
Vol 7 (1) ◽  
pp. 43-53
Author(s):  
Abbas Jassem Jubear ◽  
Ali Hameed Abd

The heat sink with vertically rectangular interrupted fins was investigated numerically in a natural convection field, with steady-state heat transfer. A numerical study has been conducted using ANSYS Fluent software (R16.1) in order to develop a 3-D numerical model.  The dimensions of the fins are (305 mm length, 100 mm width, 17 mm height, and 9.5 mm space between fins. The number of fins used on the surface is eight. In this study, the heat input was used as follows: 20, 40, 60, 80, 100, and 120 watts. This study focused on interrupted rectangular fins with a different arrangement and angle of the fins. Results show that the addition of interruption in fins in various arrangements will improve the thermal performance of the heat sink, and through the results, a better interruption rate as an equation can be obtained.


Author(s):  
Salaika Parvin ◽  
Nepal Chandra Roy ◽  
Litan Kumar Saha ◽  
Sadia Siddiqa

A numerical study is performed to investigate nanofluids' flow field and heat transfer characteristics between the domain bounded by a square and a wavy cylinder. The left and right walls of the cavity are at constant low temperature while its other adjacent walls are insulated. The convective phenomena take place due to the higher temperature of the inner corrugated surface. Super elliptic functions are used to transform the governing equations of the classical rectangular enclosure into a system of equations valid for concentric cylinders. The resulting equations are solved iteratively with the implicit finite difference method. Parametric results are presented in terms of streamlines, isotherms, local and average Nusselt numbers for a wide range of scaled parameters such as nanoparticles concentration, Rayleigh number, and aspect ratio. Several correlations have been deduced at the inner and outer surface of the cylinders for the average Nusselt number, which gives a good agreement when compared against the numerical results. The strength of the streamlines increases significantly due to an increase in the aspect ratio of the inner cylinder and the Rayleigh number. As the concentration of nanoparticles increases, the average Nusselt number at the internal and external cylinders becomes stronger. In addition, the average Nusselt number for the entire Rayleigh number range gets enhanced when plotted against the volume fraction of the nanofluid.


Sign in / Sign up

Export Citation Format

Share Document