Development of a Catalytic Combustor for a Heavy-Duty Utility Gas Turbine

1997 ◽  
Vol 119 (4) ◽  
pp. 844-851 ◽  
Author(s):  
R. A. Dalla Betta ◽  
J. C. Schlatter ◽  
S. G. Nickolas ◽  
M. B. Cutrone ◽  
K. W. Beebe ◽  
...  

The most effective technologies currently available for controlling NOx emissions from heavy-duty industrial gas turbines are diluent injection in the combustor reaction zone, and lean premixed Dry Low NOx (DLN) combustion. For ultralow emissions requirements, these must be combined with selective catalytic reduction (SCR) DeNOx systems in the gas turbine exhaust. An alternative technology for achieving comparable emissions levels with the potential for lower capital investment and operating cost is catalytic combustion of lean premixed fuel and air within the gas turbine. The design of a catalytic combustion system using natural gas fuel has been prepared for the GE model MS9OO1E gas turbine. This machine has a turbine inlet temperature to the first rotating stage of over 1100°C and produces approximately 105 MW electrical output in simple cycle operation. The 508-mm-dia catalytic combustor designed for this gas turbine was operated at full-scale conditions in tests conducted in 1992 and 1994. The combustor was operated for twelve hours during the 1994 test and demonstrated very low NOx emissions from the catalytic reactor. The total exhaust NOx level was approximately 12–15 ppmv and was produced almost entirely in the preburner ahead of the reactor. A small quantity of steam injected into the preburner reduced the NOx emissions to 5–6 ppmv. Development of the combustion system has continued with the objectives of reducing CO and UHC emissions, understanding the parameters affecting reactor stability and spatial nonuniformities that were observed at low inlet temperature, and improving the structural integrity of the reactor system to a level required for commercial operation of gas turbines. Design modifications were completed and combustion hardware was fabricated for additional full-scale tests of the catalytic combustion system in March 1995 and January 1996. This paper presents a discussion of the combustor design, the catalytic reactor design, and the results of full-scale testing of the improved combustor at MS9OO1E cycle conditions in the March 1995 and January 1996 tests. Major improvements in performance were achieved with CO and UHC emissions of 10 ppmv and 0 ppmv at baseload conditions. This ongoing program will lead to two additional full-scale combustion system tests in 1996. The results of these tests will be available for discussion at the June 1996 Conference in Birmingham.

Author(s):  
Ralph A. Dalla Betta ◽  
James C. Schlatter ◽  
Sarento G. Nickolas ◽  
Martin B. Cutrone ◽  
Kenneth W. Beebe ◽  
...  

The most effective technologies currently available for controlling NOx emissions from heavy-duty industrial gas turbines are either diluent injection in the combustor reaction zone, or lean premixed Dry Low NOx (DLN) combustion. For ultra low emissions requirements, these must be combined with selective catalytic reduction (SCR) DeNOx systems in the gas turbine exhaust. An alternative technology for achieving comparable emissions levels with the potential for lower capital investment and operating cost is catalytic combustion of lean premixed fuel and air within the gas turbine. The design of a catalytic combustion system using natural gas fuel has been prepared for the GE model MS9OOIE gas turbine. This machine has a turbine inlet temperature to the first rotating stage of over 1100°C and produces approximately 105 MW electrical output in simple cycle operation. The 508 mm diameter catalytic combustor designed for this gas turbine was operated at full-scale conditions in tests conducted in 1992 and 1994. The combustor was operated for twelve hours during the 1994 test and demonstrated very low NOx emissions from the catalytic reactor. The total exhaust NOx level was approximately 12–15 ppmv and was produced almost entirely in the preburner ahead of the reactor. A small quantity of steam injected into the preburner reduced the NOx emissions to 5–6 ppmv. Development of the combustion system has continued with the objectives of reducing CO and UHC emissions, understanding the parameters affecting reactor stability and spatial non-uniformities which were observed at low inlet temperature, and improving the structural integrity of the reactor system to a level required for commercial operation of gas turbines. Design modifications were completed and combustion hardware was fabricated for additional full-scale tests of the catalytic combustion system in March 1995 and January 1996. This paper presents a discussion of the combustor design, the catalytic reactor design and the results of full-scale testing of the improved combustor at MS9OOIE cycle conditions in the March 1995 and January 1996 tests. Major improvements in performance were achieved with CO and UHC emissions of 10 ppmv and 0 ppmv at base load conditions. This ongoing program will lead to two additional full-scale combustion system tests in 1996. The results of these tests will be available for discussion at the June 1996 Conference in Birmingham.


Author(s):  
Geoff Myers ◽  
Dan Tegel ◽  
Markus Feigl ◽  
Fred Setzer ◽  
William Bechtel ◽  
...  

The lean, premixed DLN2.5H combustion system was designed to deliver low NOx emissions from 50% to 100% load in both the Frame 7H (60 Hz) and Frame 9H (50 Hz) heavy-duty industrial gas turbines. The H machines employ steam cooling in the gas turbine, a 23:1 pressure ratio, and are fired at 1440 C (2600 F) to deliver over-all thermal efficiency for the combined-cycle system near 60%. The DLN2.5H combustor is a modular can-type design, with 14 identical chambers used on the 9H machine, and 12 used on the smaller 7H. On a 9H combined-cycle power plant, both the gas turbine and steam turbine are fired using the 14-chamber DLN2.5H combustion system. An extensive full-scale, full-pressure rig test program developed the fuel-staged dry, low emissions combustion system over a period of more than five years. Rig testing required test stand inlet conditions of over 50 kg/s at 500 C and 28 bar, while firing at up to 1440 C, to simulate combustor operation at base load. The combustion test rig simulated gas path geometry from the discharge of the annular tri-passage diffuser through the can-type combustion liner and transition piece, to the inlet of the first stage turbine nozzle. The present paper describes the combustion system, and reports emissions performance and operability results over the gas turbine load and ambient temperature operating range, as measured during the rig test program.


Author(s):  
William D. York ◽  
Willy S. Ziminsky ◽  
Ertan Yilmaz

Interest in hydrogen as a primary fuel stream in heavy-duty gas turbine engines has increased as precombustion carbon capture and sequestration (CCS) has become a viable option for integrated gasification combined cycle (IGCC) power plants. The U.S. Department of Energy has funded the Advanced IGCC/Hydrogen Gas Turbine Program since 2005 with an aggressive plant-level NOx target of 2 ppm at 15% O2 for an advanced gas turbine cycle. Approaching this NOx level with highly reactive hydrogen fuel at the conditions required is a formidable challenge that requires novel combustion technology. This study begins by measuring entitlement NOx emissions from perfectly premixed combustion of the high-hydrogen fuels of interest. A new premixing fuel injector for high-hydrogen fuels was designed to balance reliable flashback-free operation, reasonable pressure drop, and low emissions. The concept relies on small-scale jet-in-crossflow mixing that is a departure from traditional swirl-based premixing concepts. Single nozzle rig experiments were conducted at pressures of 10 atm and 17 atm, with air preheat temperatures of about 650 K. With nitrogen-diluted hydrogen fuel, characteristic of carbon-free syngas, stable operation without flashback was conducted up to flame temperatures of approximately 1850 K. In addition to the effects of pressure, the impacts of nitrogen dilution levels and amounts of minor constituents in the fuel—carbon monoxide, carbon dioxide, and methane—on flame holding in the premixer are presented. The new fuel injector concept has been incorporated into a full-scale, multinozzle combustor can with an energy conversion rate of more than 10 MW at F-class conditions. The full-can testing was conducted at full gas turbine conditions and various fuel compositions of hydrogen, natural gas, and nitrogen. This combustion system has accumulated over 100 h of fired testing at full load with hydrogen comprising over 90% of the reactants by volume. NOx emissions (ppm) have been measured in the single digits with hydrogen-nitrogen fuel at target gas turbine pressure and temperatures. Results of the testing show that small-scale fuel-air mixing can deliver a reliable, low-NOx solution to hydrogen combustion in advanced gas turbines.


Author(s):  
James C. Schlatter ◽  
Ralph A. Dalla Betta ◽  
Sarento G. Nickolas ◽  
Martin B. Cutrone ◽  
Kenneth W. Beebe ◽  
...  

Catalytic combustion offers the possibility of attaining the firing temperatures of current and next generation gas turbines [up to ∼1450°C (2640°F)] with nitrogen oxides (NOx) production as low as 1 part per million by volume (ppmv). Such catalytic combustion technology has been under development at Catalytica for several years, and the first full scale test of the technology took place at the General Electric Company under TEPCO sponsorship in 1992. The results of the most recent and most successful full scale test in this program are reported in this paper. The catalytic combustor system was designed for the GE Model MS9001E gas turbine fired with natural gas fuel. The 508-mm (20-in) diameter catalytic reactor was operated at conditions representative of the startup and load cycle of that machine. It was verified that the observed NOx levels were produced not in the catalyst, but in the diffusinn flame of the preburner used to start the system and maintain the necessary catalyst inlet temperature. Even so, NOx levels below 5 ppmv (at 15% O2) were achieved at the simulated base load operating point. Carbon monoxide (CO) and unburned hydrocarbons (UHC) emissions were likewise below 10 ppmv at that condition. Single digit emissions levels also were recorded at conditions representative of the combustor operating at 78% load, the first such demonstration of the turndown capability of this system. Throughout the test, dynamic pressure measurements showed the catalytic combustor to be quieter than even the diffusion flame combustors currently in commercial service.


Author(s):  
K. W. Beebe ◽  
M. B. Cutrone ◽  
R. N. Matthews ◽  
R. A. Dalla Betta ◽  
J. C. Schlatter ◽  
...  

The most effective technologies currently available for controlling NOx emissions from heavy duty industrial gas turbines are either diluent injection in the combustor reaction zone, or dry low NOx (DLN) combustion, coupled with selective catalytic reduction (SCR) De-NOx in the gas turbine exhaust. A competing technology with the potential for achieving comparable emissions levels at substantially lower capital investment and operating cost is catalytic combustion of lean premixed fuel and air within the gas turbine. A preliminary design of a catalytic combustion system using natural gas fuel has been prepared for the GE Model MS9001E gas turbine. A full scale test combustor has been constructed for a full pressure development test based upon this design work and was operated at the GE Power Generation Engineering Laboratory in Schenectady, New York. Discussion of the catalytic combustor design, the catalytic reactor design and laboratory development test results is presented.


Author(s):  
William D. York ◽  
Willy S. Ziminsky ◽  
Ertan Yilmaz

Interest in hydrogen as a primary fuel stream in heavy-duty gas turbine engines has increased as pre-combustion carbon capture and sequestration (CCS) has become a viable option for integrated gasification combined cycle (IGCC) power plants. The US Department of Energy has funded the Advanced IGCC/Hydrogen Gas Turbine Program since 2005 with an aggressive plant-level NOx target of 2 ppm @ 15% O2 for an advanced gas turbine cycle. Approaching this NOx level with highly-reactive hydrogen fuel at the conditions required is a formidable challenge that requires novel combustion technology. This study begins by measuring entitlement NOx emissions from perfectly-premixed combustion of the high-hydrogen fuels of interest. A new premixing fuel injector for high-hydrogen fuels was designed to balance reliable, flashback-free operation, reasonable pressure drop, and low emissions. The concept relies on distributed, small-scale jet-in-crossflow mixing that is a departure from traditional swirl-based premixing concepts. Single nozzle rig experiments were conducted at pressures of 10 atm and 17 atm, with air preheat temperatures of about 650K. With nitrogen-diluted hydrogen fuel, characteristic of carbon-free syngas, stable operation without flashback was conducted up to flame temperatures of approximately 1850K. In addition to the effects of operating pressure, the impact of minor constituents in the fuel — carbon monoxide, carbon dioxide, and methane — on flame holding in the premixer is presented. The new fuel injector concept has been incorporated into a full-scale, multi-nozzle combustor can with an energy conversion rate of more than 10 MW at F-class conditions. The full-can testing was conducted at full gas turbine conditions and various fuel compositions of hydrogen, natural gas, and nitrogen. This combustion system has accumulated over 100 hours of fired testing at full-load with hydrogen comprising over 90 percent of the reactants by volume. NOx emissions (ppm) have been measured in the single digits with hydrogen-nitrogen fuel at target gas turbine pressure and temperatures. Results of the testing show that small-scale fuel-air mixing can deliver a reliable, low-NOx solution to hydrogen combustion in advanced gas turbines.


Author(s):  
William D. York ◽  
Bryan W. Romig ◽  
Michael J. Hughes ◽  
Derrick W. Simons ◽  
Joseph V. Citeno

Operators of heavy duty gas turbines desire more flexibility of operation in compliance with increasingly stringent emissions regulations. Delivering low NOx at base load operation, while at the same time meeting aggressive startup, shutdown, and part load requirements for NOx, CO, and unburned hydrocarbons is a challenge that requires novel solutions in the framework of lean premixed combustion systems. The DLN2.6+ combustion system, first offered by the General Electric Company (GE) in 2005 on the 9F series gas turbines for the 50 Hz market, has a proven track record of low emissions, flexibility, and reliability. In 2010, GE launched a program to incorporate the DLN2.6+ into the 7F gas turbine model. The primary driver for the introduction of this combustion system into the 60 Hz market was to enable customers to capitalize on opportunities to use shale gas, which may have a greater Wobbe range and higher reactivity than traditional natural gas. The 7F version of the DLN2.6+ features premixed pilot flames on the five outer swirl-stabilized premixing fuel nozzles (“swozzles”). The premixed pilots have their roots in the multitube mixer technology developed by GE in the US Department of Energy Hydrogen Gas Turbine Program. A fraction of air is extracted prior to entering the combustor and sent to small tubes around the tip of the fuel nozzle centerbody. A dedicated pilot fuel circuit delivers the gas fuel to the pilot tubes, where it is injected into the air stream and given sufficient length to mix. Since the pilot flames are premixed, they contribute lower NOx emissions than a diffusion pilot, but can still provide enhanced main circuit flame stability at low-load conditions. The pilot equivalence ratio can be optimized for the specific operating conditions of the gas turbine. This paper presents the development and validation testing of the premixed pilots, which were tested on E-class and F-class gas turbine combustion system rigs at GE Power & Water’s Gas Turbine Technology Lab. A 25% reduction in NOx emissions at nominal firing temperature was demonstrated over a diffusion flame pilot, translating into more than 80% reduction in CO emissions if increased flame temperature is employed to hold constant NOx. On the new 7F DLN2.6+, the premixed pilots have enabled modifications to the system to reduce base load NOx emissions while maintaining similar gas turbine low-load performance and bringing a significant reduction in the combustor exit temperature at which LBO occurs, highlighting the stability the pilot system brings to the combustor without the NOx penalty of a diffusion pilot. The new combustion system is scheduled to enter commercial operation on GE 7F series gas turbines in 2015.


Author(s):  
P. Dutta ◽  
L. H. Cowell ◽  
D. K. Yee ◽  
R. A. Dalla Betta

The goal of the Advanced Turbine Systems (ATS) program is the design and development of high thermal efficiency gas turbines with pollutant emissions at single digit levels, through the development of advanced recuperated gas turbines. Following successful subscale catalytic reactor testing, a full scale catalytic combustion system was designed to be representative of a single can in a multi-can gas turbine combustor configuration. The full scale catalytic combustion system is modular in design and includes a fuel/air premixer upstream of the catalytic reactor and a post catalyst homogeneous combustion zone downstream of the catalyst bed to complete the homogeneous gas-phase reactions. System start-up is accomplished using a lean-premixed (LP) low emissions fuel injector. The system transitions to catalyst operation using a variable geometry valve that diverts air flow into the catalyst at loads greater than 50% of full load. The variable geometry valve is used to operate the catalyst within the narrow operating window due to limited fuel/air turndown allowed by the catalyst. A catalyst design with preferential catalyst coating on a corrugated metal substrate to limit catalyst substrate temperatures was selected for the system. Mean fuel concentration measurements at the inlet to the catalyst bed using an instrumented catalyst module showed the fuel/air premixing to be within catalyst specifications. Preliminary combustion tests on the system were completed. The catalytic combustion system was tested over the 50-to-100% load range. Using variable geometry control, emissions goals (< 5 ppmv NOx, < 10 ppmv CO and UHC corrected to 15% O2) were achieved for catalyst operation between 50-and-100% load conditions. The system was started and operated under part-load conditions using the LP injector. Efforts are under way to accomplish successful transition from LP mode of operation to catalytic mode of operation using the variable geometry system.


Author(s):  
R. A. Dalla Betta ◽  
J. C. Schlatter ◽  
S. G. Nickolas ◽  
D. K. Yee ◽  
T. Shoji

A catalytic combustion system has been developed which feeds full fuel and air to the catalyst but avoids exposure of the catalyst to the high temperatures responsible for deactivation and thermal shock fracture of the supporting substrate. The combustion process is initiated by the catalyst and is completed by homogeneous combustion in the post catalyst region where the highest temperatures are obtained. This has been demonstrated in subscale test rigs at pressures up to 14 atmospheres and temperatures above 1300°C (2370°F). At pressures and gas linear velocities typical of gas turbine combustors, the measured emissions from the catalytic combustion system are NOx < 1 ppm, CO < 2 ppm and UHC < 2 ppm, demonstrating the capability to achieve ultra low NOx and at the same time low CO and UHC.


Author(s):  
G. J. Kelsall ◽  
M. A. Smith ◽  
H. Todd ◽  
M. J. Burrows

Advanced coal based power generation systems such as the British Coal Topping Cycle offer the potential for high efficiency electricity generation with minimum environmental impact. An important component of the Topping Cycle programme is the development of a gas turbine combustion system to burn low calorific value (3.5–4.0 MJ/m3 wet gross) coal derived fuel gas, at a turbine inlet temperature of 1260°C, with minimum pollutant emissions. The paper gives an overview of the British Coal approach to the provision of a gas turbine combustion system for the British Coal Topping Cycle, which includes both experimental and modelling aspects. The first phase of this programme is described, including the design and operation of a low-NOx turbine combustor, operating at an outlet temperature of 1360°C and burning a synthetic low calorific value (LCV) fuel gas, containing 0 to 1000 ppmv of ammonia. Test results up to a pressure of 8 bar are presented and the requirements for further combustor development outlined.


Sign in / Sign up

Export Citation Format

Share Document