The Effect of Drainage Configuration on Heat Transfer Under an Impinging Liquid Jet Array

1999 ◽  
Vol 121 (4) ◽  
pp. 803-810 ◽  
Author(s):  
K. Garrett ◽  
B. W. Webb

The heat transfer characteristics of single and dual-exit drainage configurations for arrays of liquid jets impinging normal to a heated isoflux plate has been studied experimentally. The interaction of drainage channel crossflow from upstream jets and the stagnation jets and its impact on heat transfer was the focus of the investigation. Infrared thermography was used to measure the local temperature distribution on the heated plate, from which local heat transfer coefficients were determined. A single jet diameter was used, and jet arrays with jet-to-jet spacings of 4.8, 6, 8, and 12 jet diameters were studied. Average jet Reynolds numbers in the range 400–5000 were investigated for jet nozzle-to-impingement plate spacings of 1, 2, and 4 jet diameters for fully flooded (submerged) drainage flow. A single jet-to-plate spacing large enough to yield free-surface jets was also studied. The data reveal a complex dependence of local and average Nusselt numbers on the geometric parameters which describe the problem configuration.

1995 ◽  
Vol 117 (2) ◽  
pp. 309-315 ◽  
Author(s):  
B. L. Owsenek ◽  
J. Seyed-Yagoobi ◽  
R. H. Page

Corona wind enhancement of free convection was investigated with the needle-plate geometry in air. High voltage was applied to a needle suspended above a heated plate, and heat transfer coefficients were computed by measuring the plate surface temperature distribution with an infrared camera. Local heat transfer coefficients greater than 65 W/m2 K were measured, an enhancement of more than 25:1 over natural convection. The enhancement extended over a significant area, often reaching beyond the 30 cm measurement radius. At high power levels, Joule heating significantly reduced the effective impingement point heat transfer coefficient. The corona wind was found to be more efficient with positive potential than with negative. The heat transfer efficiency was optimized with respect to electrode height and applied voltage. The needle-plate heat transfer effectiveness improved rapidly with increasing height, and became relatively insensitive to height above a threshold value of about 5 cm.


1991 ◽  
Vol 113 (1) ◽  
pp. 71-78 ◽  
Author(s):  
J. Stevens ◽  
B. W. Webb

The purpose of this investigation was to characterize local heat transfer coefficients for round, single-phase free liquid jets impinging normally against a flat uniform heat flux surface. The problem parameters investigated were jet Reynolds number Re, nozzle-to-plate spacing z, and jet diameter d. A region of near-constant Nusselt number was observed for the region bounded by 0≤r/d≤0.75, where r is the radial distance from the impingement point. The local Nusselt number profiles exhibited a sharp drop for r/d > 0.75, followed by an inflection and a slower decrease there-after. Increasing the nozzle-to-plate spacing generally decreased the heat transfer slightly. The local Nusselt number characteristics were found to be dependent on nozzle diameter. This was explained by the influence of the free-stream velocity gradient on local heat transfer, as predicted in the classical analysis of infinite jet stagnation flow and heat transfer. Correlations for local and average Nusselt numbers reveal an approximate Nusselt number dependence on Re1/3.


2001 ◽  
Vol 17 (1) ◽  
pp. 29-38
Author(s):  
Shou-Shing Hsieh ◽  
Jung-Tai Huang ◽  
Huang-Hsiu Tsai

ABSTRACTExperiments for heat transfer characteristics of confined circular single jet impingement were conducted. The effect of jet Reynolds number, jet hole-to-plate spacing and heat flux levels on heat transfer characteristics of the heated target surface was examined and presented. The local heat transfer coefficient along the surface is measured and correlations of the stagnation point, local and average Nusselt number are developed and discussed. Finally, comparisons of the present data with existing results were also made.


Author(s):  
Shou-Shing Hsieh ◽  
Jung-Tai Huang

An experimental study was performed in a confined circular single jet impingement. The effect of jet Reynolds number, nozzle-to-plate spacing and heat flux levels on heat transfer characteristics of the heated target surface was examined and presented. Flow visualization was made to broaden our fundamental understanding of the physical process of the type of flow. Transition and turbulent regimes are identified. The local heat transfer coefficient along the surface is measured and correlation of the stagnation point Nusselt number are presented and discussed.


1987 ◽  
Vol 109 (1) ◽  
pp. 68-73 ◽  
Author(s):  
K. Ichimiya

Experiments were carried out to examine the effects of several roughness elements on the insulated wall opposite the smooth heated plate for the heat transfer with air flowing through a parallel plate duct. The local heat transfer coefficient, the velocity distribution, the turbulence intensity, and the pressure drop were measured. An optimum pitch of roughness elements for the augmentation of heat transfer exists for each space between two parallel plates. Additionally, the correspondence between the heat transfer and the flow situation is also examined. Acceleration and turbulence produced by roughness elements contribute to the increase of the local heat transfer coefficients on the smooth heated plate. Thermal performance is evaluated at constant pumping power.


2013 ◽  
Vol 34 (1) ◽  
pp. 5-16 ◽  
Author(s):  
Jozef Cernecky ◽  
Jan Koniar ◽  
Zuzana Brodnianska

Abstract The paper deals with a study of the effect of regulating elements on local values of heat transfer coefficients along shaped heat exchange surfaces with forced air convection. The use of combined methods of heat transfer intensification, i.e. a combination of regulating elements with appropriately shaped heat exchange areas seems to be highly effective. The study focused on the analysis of local values of heat transfer coefficients in indicated cuts, in distances expressed as a ratio x/s for 0; 0.33; 0.66 and 1. As can be seen from our findings, in given conditions the regulating elements can increase the values of local heat transfer coefficients along shaped heat exchange surfaces. An optical method of holographic interferometry was used for the experimental research into temperature fields in the vicinity of heat exchange surfaces. The obtained values correspond very well with those of local heat transfer coefficients αx, recorded in a CFD simulation.


Author(s):  
T. Vossel ◽  
N. Wolff ◽  
B. Pustal ◽  
A. Bührig-Polaczek ◽  
M. Ahmadein

AbstractAnticipating the processes and parameters involved for accomplishing a sound metal casting requires an in-depth understanding of the underlying behaviors characterizing a liquid melt solidifying inside its mold. Heat balance represents a major factor in describing the thermal conditions in a casting process and one of its main influences is the heat transfer between the casting and its surroundings. Local heat transfer coefficients describe how well heat can be transferred from one body or material to another. This paper will discuss the estimation of these coefficients in a gravity die casting process with local air gap formation and heat shrinkage induced contact pressure. Both an experimental evaluation and a numerical modeling for a solidification simulation will be performed as two means of investigating the local heat transfer coefficients and their local differences for regions with air gap formation or contact pressure when casting A356 (AlSi7Mg0.3).


2015 ◽  
Vol 19 (5) ◽  
pp. 1769-1789 ◽  
Author(s):  
Volodymyr Rifert ◽  
Volodymyr Sereda

Survey of the works on condensation inside smooth horizontal tubes published from 1955 to 2013 has been performed. Theoretical and experimental investigations, as well as more than 25 methods and correlations for heat transfer prediction are considered. It is shown that accuracy of this prediction depends on the accuracy of volumetric vapor content and pressure drop at the interphase. The necessity of new studies concerning both local heat transfer coefficients and film condensation along tube perimeter and length under annular, stratified and intermediate regimes of phase flow was substantiated. These characteristics being defined will allow determining more precisely the boundaries of the flow regimes and the methods of heat transfer prediction.


2009 ◽  
Vol 131 (7) ◽  
Author(s):  
Akhilesh P. Rallabandi ◽  
Huitao Yang ◽  
Je-Chin Han

Systematic experiments are conducted to measure heat transfer enhancement and pressure loss characteristics on a square channel (simulating a gas turbine blade cooling passage) with two opposite surfaces roughened by 45 deg parallel ribs. Copper plates fitted with a silicone heater and instrumented with thermocouples are used to measure regionally averaged local heat transfer coefficients. Reynolds numbers studied in the channel range from 30,000 to 400,000. The rib height (e) to hydraulic diameter (D) ratio ranges from 0.1 to 0.18. The rib spacing (p) to height ratio (p/e) ranges from 5 to 10. Results show higher heat transfer coefficients at smaller values of p/e and larger values of e/D, though at the cost of higher friction losses. Results also indicate that the thermal performance of the ribbed channel falls with increasing Reynolds numbers. Correlations predicting Nusselt number (Nu) and friction factor (f¯) as a function of p/e, e/D, and Re are developed. Also developed are correlations for R and G (friction and heat transfer roughness functions, respectively) as a function of the roughness Reynolds number (e+), p/e, and e/D.


Sign in / Sign up

Export Citation Format

Share Document