Automated Formation of Closed Form Kinematic Displacement Polynomials for Open Loop Planar and Spatial Chains

1995 ◽  
Vol 117 (1) ◽  
pp. 83-88
Author(s):  
S. C. Jen ◽  
D. Kohli

A new numerical approach for determining inverse kinematic polynomials of manipulators is presented in this paper. Let the inverse kinematic polynomial of a manipulator in one revolute joint variable θi be represented by gnTn + gn-1Tn-1 + gn-2Tn-2 + • + g1T + go = 0. T = tanθi/2 and go, g1...gn are polynomial type functions of hand position variables. The coefficients g are expressed in terms of undetermined coefficients and hand position variables. Then the undetermined coefficients are evaluated by using direct kinematics and the solutions of sets of linear equations, thus determining coefficients g and the inverse kinematic polynomial. The method is general and may be applied for determining inverse kinematic polynomials of any manipulator. However, the number of linear equations required in determining coefficients g become significantly larger as the number of links and the degrees of the manipulator increase. Numerical examples of 2R planar and 3R spatial manipulator are presented for illustration.

1994 ◽  
Vol 116 (2) ◽  
pp. 614-621 ◽  
Author(s):  
Yong-Xian Xu ◽  
D. Kohli ◽  
Tzu-Chen Weng

A general formulation for the differential kinematics of hybrid-chain manipulators is developed based on transformation matrices. This formulation leads to velocity and acceleration analyses, as well as to the formation of Jacobians for singularity and unstable configuration analyses. A manipulator consisting of n nonsymmetrical subchains with an arbitrary arrangement of actuators in the subchain is called a hybrid-chain manipulator in this paper. The Jacobian of the manipulator (called here the system Jacobian) is a product of two matrices, namely the Jacobian of a leg and a matrix M containing the inverse of a matrix Dk, called the Jacobian of direct kinematics. The system Jacobian is singular when a leg Jacobian is singular; the resulting singularity is called the inverse kinematic singularity and it occurs at the boundary of inverse kinematic solutions. When the Dk matrix is singular, the M matrix and the system Jacobian do not exist. The singularity due to the singularity of the Dk matrix is the direct kinematic singularity and it provides positions where the manipulator as a whole loses at least one degree of freedom. Here the inputs to the manipulator become dependent on each other and are locked. While at these positions, the platform gains at least one degree of freedom, and becomes statically unstable. The system Jacobian may be used in the static force analysis. A stability index, defined in terms of the condition number of the Dk matrix, is proposed for evaluating the proximity of the configuration to the unstable configuration. Several illustrative numerical examples are presented.


Author(s):  
Yong-Xian Xu ◽  
Dilip Kohli ◽  
Tzu-Chen Weng

Abstract A general formulation for the differential kinematics of hybrid-chain manipulators is developed based on transformation matrices. This formulations leads to velocity and acceleration analyses, as well as to the formation of Jacobians for singularity and unstable configuration analyses. A manipulator consisting of n nonsymmetrical subchains with an arbitrary arrangement of actuators in the subchain is called a hybrid-chain manipulator in this paper. The Jacobian of the manipulator (called here the system Jacobian) is a product of two matrices, namely the Jacobian of a leg and a matrix M containing the inverse of a matrix Dk, called the Jacobian of direct kinematics. The system Jacobian is singular when a leg Jacobian is singular; the resulting singularity is called the inverse kinematic singularity and it occurs at the boundary of inverse kinematic solutions. When the Dk matrix is singular, the M matrix and the system Jacobian do not exist. The singularity due to the singularity of the Dk matrix is the direct kinematic singularity and it provides positions where the manipulator as a whole loses at least one degree of freedom. Here the inputs to the manipulator become dependent on each other and are locked. While at these positions, the platform gains at least one degree of freedom, and becomes statically unstable. The system Jacobian may be used in the static force analysis. A stability index, defined in terms of the condition number of the Dk matrix, is proposed for evaluating the proximity of the configuration to the unstable configuration. Several illustrative numerical examples are presented.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mohsen Alipour ◽  
Dumitru Baleanu ◽  
Fereshteh Babaei

We introduce a new combination of Bernstein polynomials (BPs) and Block-Pulse functions (BPFs) on the interval [0, 1]. These functions are suitable for finding an approximate solution of the second kind integral equation. We call this method Hybrid Bernstein Block-Pulse Functions Method (HBBPFM). This method is very simple such that an integral equation is reduced to a system of linear equations. On the other hand, convergence analysis for this method is discussed. The method is computationally very simple and attractive so that numerical examples illustrate the efficiency and accuracy of this method.


2011 ◽  
Vol 403-408 ◽  
pp. 5053-5060 ◽  
Author(s):  
Mostafa Ghayour ◽  
Amir Zareei

In this paper, an appropriate mechanism for a hexapod spider-like mobile robot is introduced. Then regarding the motion of this kind of robot which is inspired from insects, direct kinematics of position and velocity of the centre of gravity (C.G.) of the body and noncontact legs are analysed. By planning and supposing a specific time variation for each joint variable, location and velocity of the C.G. of the robot platform and angular velocity of the body are obtained and the results are shown and analysed.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Changqing Miao ◽  
Yintao Wei ◽  
Xiangqiao Yan

A numerical approach for the stress concentration of periodic collinear holes in an infinite plate in tension is presented. It involves the fictitious stress method and a generalization of Bueckner's principle. Numerical examples are concluded to show that the numerical approach is very efficient and accurate for analyzing the stress concentration of periodic collinear holes in an infinite plate in tension. The stress concentration of periodic collinear square holes in an infinite plate in tension is studied in detail by using the numerical approach. The calculated stress concentration factor is proven to be accurate.


1997 ◽  
Vol 64 (3) ◽  
pp. 495-502 ◽  
Author(s):  
H. Nozaki ◽  
M. Taya

In this paper the elastic fields in an arbitrary, convex polygon-shaped inclusion with uniform eigenstrains are investigated under the condition of plane strain. Closed-form solutions are obtained for the elastic fields in a polygon-shaped inclusion. The applications to the evaluation of the effective elastic properties of composite materials with polygon-shaped reinforcements are also investigated for both dilute and dense systems. Numerical examples are presented for the strain field, strain energy, and stiffness of the composites with polygon shaped fibers. The results are also compared with some existing solutions.


2017 ◽  
Vol 12 (1) ◽  
pp. 147-184 ◽  
Author(s):  
Fei Huang ◽  
Honglin Yu

AbstractIn this paper, the optimal safety loading that the reinsurer should set in the reinsurance pricing is studied, which is novel in the literature. It is first assumed that the insurer will choose the form of the reinsurance contract by following the results derived in Cai et al. Different optimality criteria from the reinsurer’s perspective are then studied, such as maximising the expectation of the profit, maximising the utility of the profit and minimising the value-at-risk of the reinsurer’s total loss. By applying the concept of comonotonicity, the problem in which the reinsurer is facing two risks with unknown dependency structure is also solved. Closed-form solutions are obtained when the underlying losses are zero-modified exponentially distributed. Finally, numerical examples are provided to illustrate the results derived.


1995 ◽  
Vol 117 (4) ◽  
pp. 658-661 ◽  
Author(s):  
H. R. Mohammadi Daniali ◽  
P. J. Zsombor-Murray ◽  
J. Angeles

Two versions of spatial double-triangular mechanisms are introduced, one with three and one with six degrees of freedom. Using dual-number quaternion algebra, a formula for the direct kinematics of these manipulators is derived. Numerical examples are included.


1989 ◽  
Vol 111 (4) ◽  
pp. 366-369
Author(s):  
Lie Yu ◽  
You-Bai Xie ◽  
Jun Zhu ◽  
Damou Qiu

The objective function applied to express the optimum response of the rotor-bearing system is presented based on the complex mode analysis. Two kinds of problems about the calculation of control forces are solved: in the nonconstraint condition the optimization of control forces is treated as the evaluation of a set of linear equations; and the Powell and complex methods are used to calculate the constrained control forces. Numerical examples are also given.


2021 ◽  
Vol 1 (1) ◽  
pp. 13-20
Author(s):  
Tao Bao ◽  
Mohammed Nabil EL KORSO

The co-centered orthogonal loop and dipole (COLD) array exhibits some interesting properties, which makes it ubiquitous in the context of polarized source localization. In the literature, one can find a plethora of estimation schemes adapted to the COLD array. Nevertheless, their ultimate performance in terms the so-called threshold region of mean square error (MSE), have not been fully investigated. In order to fill this lack, we focus, in this paper, on conditional and unconditional bounds that are tighter than the well known Cramér-Rao Bound (CRB). More precisely, we give some closed form expressions of the McAulay-Hofstetter, the Hammersley-Chapman-Robbins, the McAulaySeidman bounds and the recent Todros-Tabrikian bound, for both the conditional and unconditional observation model. Finally, numerical examples are provided to corroborate the theoretical analysis and to reveal a number of insightful properties.


Sign in / Sign up

Export Citation Format

Share Document