Numerical Stress Analysis of Internal Ring-Stiffened Tubular T-Joints

1995 ◽  
Vol 117 (2) ◽  
pp. 113-125 ◽  
Author(s):  
D. I. Nwosu ◽  
A. S. J. Swamidas ◽  
K. Munaswamy

In order to design a tubular joint to carry a larger load and to possess a longer life, the prime objective of design would be to reduce stress concentration factor at the intersection of the joint; one method to achieve the same is to stiffen the joint with internal ring stiffeners. This paper presents results of the stress analysis for stress distribution, along the intersection of internally ring-stiffened tubular T-joints, under the action of axial and in-plane/out-of-plane (bending) loads, using degenerate shell elements. The stress analyses results are obtained using the general-purpose finite element package called ABAQUS. Post-processing of results has been facilitated by other small programs developed for the purpose. The nominal brace stress and the maximum principal stress values have been used for stress concentration factor computations. The effects of stiffener size, location, number, thickness (τ) and thinness (γ) ratios have been investigated, and the results validated with known analytical and experimental investigations. A comparison of the results obtained from finite element analysis, and experimental results of the Canadian Cooperative Fatigue Studies Program, carried out at Memorial University and University of Waterloo, is also made. The results obtained indicate that stiffening can considerably reduce the stress concentration in joints, and thus increase the load-carrying capacity of tubular T-joints.

Author(s):  
Yuhui Huang ◽  
Chengcheng Wang ◽  
Shan-Tung Tu ◽  
Fu-Zhen Xuan ◽  
Takamoto Itoh

Finite element analysis is adopted to study the stress concentration of pit area under tension-torsion loading. The stress concentration factors under regular evolution and irregular evolution of pits are investigated by conducting a series of three-dimensional semi-elliptical pitted models. Based on the finite element analysis, it can be concluded that pit aspect ratio (a/2c) is a significant parameter affecting stress concentration factor (SCF) for regular evolution pits. Pits, having higher aspect ratio, are very dangerous form and can cause significant reduction in the load carrying capacity. When local dissolution occurs in the pitting area, SCF will have a sharp increase, it is more probable for a crack to initiate from these areas compared with pits for regular evolution. Furthermore, local dissolution coefficient is proposed to study effect of local dissolution within the pit on SCF.


2016 ◽  
Vol 851 ◽  
pp. 739-744
Author(s):  
Bo Li ◽  
Hong Gang Lei ◽  
Xu Yang

In this paper, the author uses ANSYS, the software of finite element analysis, to establish the finite element model, the hot spot stress value of different connection structures of steel tube-welded hollow sphere under uniaxial elongation has been analyzed, the theoretical stress concentration factor of this joint has been obtained. Through the static test on the four typical test-piece, 26 steel tube-welded hollow spherical nodes in total, the actually measured stress concentration factor of the joints has been obtained. The theoretical analysis basically coincides with the law of stress concentration factor obtained from the test results.


Author(s):  
Jing Zhang ◽  
Jianchun Fan ◽  
Laibin Zhang ◽  
Dong Wen ◽  
Yumei Wang

Corrosion-induced pits will disturb the original stress distribution of casing and appear local high stress area. Through 3-D finite element analysis on casing with spherical and cylindrical corrosion cavity, the stress concentration degree and the influences of cavity shape, size and orifice diameter on stress concentration factor are determined and analyzed. The results show that the depth and shape of corrosion cavities are major factors impacting the stress concentration factor. For the casing with corrosion pits, the smaller orifice diameter, the more obvious influence of hemisphere effect on stress concentration factor. With the transition from shallow-spherical cavity to exact hemispherical cavity or from exact hemispherical cavity to deep-spherical cavity or from exact hemispherical cavity to cylindrical cavity, the changes of stress concentration factor show different characteristics.


Author(s):  
Ajay Garg ◽  
Ravi Tetambe

Abstract The elastic stress concentration factor, Kt, is critical in determining the life of machines, especially in the case of notched components experiencing high cycle fatigue. This Kt is defined as the ratio of the maximum stress (σmax) at the notch to the nominal stress (σnom) in the region away from the notch effect. For simple geometries such as, plate with a hole, calculation of Kt from either closed form solution or from making simple but valid assumptions is possible [1,2]. However, for complex machine components such data is usually not available in the literature. Using Kt values from the simple geometries may lead to either over or under estimation of the real Kt for such complex geometries. Such error can then further lead to a substandard product or a product which is overdesigned and expensive. Present paper outlines a methodology for computing reasonably accurate elastic stress concentration factor, Kt, using finite element analysis (FEA) tool. The maximum stress (σmax) is readily available from the finite element analysis. The nominal stress (σnom) near the stress concentration is however can not be directly extracted from the FEA results. A novel approach of estimating reasonably accurate σnom is presented in this paper. This approach is based on selecting the correct path at the stress concentration region, post processing the stress and the stress gradient results along that path and identifying the cut of point where stress concentration effect begins to take place. This methodology is first validated using two examples with known Kt and later applied to a real world problem.


2011 ◽  
Vol 189-193 ◽  
pp. 3452-3457
Author(s):  
Ya Jie Yan ◽  
Hong Gang Lei ◽  
Xue Yang

Taking pipe - hollow spherical node as the object, and using ANSYS finite element analysis software, established five kinds of finite element model to analyze the stress concentration at the weld connection of the different connections of steel structures - hollow ball under the uniaxial tension. Obtained this node’s stress concentration factor, stress distribution, by changing the hollow spherical diameter and wall thickness, pipe’s diameter and wall thickness, obtained the trend of the stress concentration factor under different control ball matches. Take static tests on typical structures of two specifications 6 hollow sphere nodes, get the measured stress concentration factor, and stress distribution of this node. Through comparative analysis of theoretical analysis and experimental results, show that the two rules are consistent. The research results can provide basis for improving the pipe - hollow spherical joints connecting structural.


1985 ◽  
Vol 107 (4) ◽  
pp. 473-478
Author(s):  
T.-Y. Chen ◽  
B.-Z. Chen ◽  
Y.-Q. Wang

The relationship between the geometric parameters of α, β, γ and τ of tubular T joints and chord stress concentration factor, SCF, has been investigated. With the use of calculated values as well as experimental data tables were compiled for a wide variety of cases when axial loading on the branch is applied. Finally, a probability analysis is given as to the reliability of using a particular SCF value.


2020 ◽  
Vol 25 (4) ◽  
pp. 59-68
Author(s):  
Mohammad A. Gharaibeh

AbstractFinite element and response surface methods were utilized to investigate the stress concentration factor induced in isotropic rectangular plates with two identical countersunk rivet holes due to uniaxial tension. In this investigation, the finite element model was constructed using ANSYS software and used to produce stress concentration factor (SCF) data. Additionally, the response surface method (RSM) was implemented to characterize the influence of the problem geometric parameters on the SCF. Besides, RSM combined with least squares regression methods were employed to formulate a simple and effective equation to mathematically compute the stress concentration factor (Kt) value. This equation was consequently verified with finite element analysis (FEA) results. Lastly, an optimum plate and holes configuration that minimizes the SCF was suggested and hence recommended.


Sign in / Sign up

Export Citation Format

Share Document