Thermal Elastohydrodynamic Lubrication of Heavily Loaded Line Contacts—An Efficient Inlet Zone Analysis

1998 ◽  
Vol 120 (1) ◽  
pp. 119-125 ◽  
Author(s):  
Mihir K. Ghosh ◽  
Raj K. Pandey

An inlet zone analysis of TEHD lubrication of heavily loaded line contacts has been done using a computationally efficient and accurate numerical method based on Lobatto quadrature developed by Elrod and Brewe (1986). The results under extremely heavy conditions of dimensionless load W = 5.2*10−4 (pH = 2.0 GPa) and dimensionless rolling velocity U = 2.0*10−10(50 m/s) are presented. Significant reduction in thermal reduction factor (film thickness) at high rolling speeds relative to isothermal conditions have been observed. The results of the present work have been compared with the results of Wilson and Sheu (1983) and Hsu and Lee (1994). A correction formula of the thermal reduction factor for the minimum film thickness has been derived for a range of thermal loading parameters, loads, and slip ratios.

1994 ◽  
Vol 116 (4) ◽  
pp. 762-769 ◽  
Author(s):  
Chao-Ho Hsu ◽  
Rong-Tsong Lee

One of the most time-consuming routines in thermal EHL problem is the calculation of the surface temperature integral. Combining the multigrid technique and the Newton-Raphson method, a modified multilevel, multi-integration algorithm for this integral is developed that can reduce the computational complexity from O (n2) to O (n ln n) for the thermal EHL problem of rolling/sliding line contacts. The employed standard central difference approximation to the coupled Reynolds and energy equations can yield the maximum difference of mass flow flux within one percent. Effects of dimensionless load, dimensionless materials parameter, slip ratio, and thermal loading parameter on the minimum film thickness are investigated. Correlation formula of thermal reduction factor for the minimum film thickness is derived for a wide range of slip ratios, loads, thermal loading parameters, and materials parameters.


1992 ◽  
Vol 114 (2) ◽  
pp. 317-327 ◽  
Author(s):  
Shao Wang ◽  
T. F. Conry ◽  
C. Cusano

A computationally simple formulation for the stationary surface temperature is developed to examine the thermal non-Newtonian EHD problem for line contacts under simple sliding conditions. Numerical results obtained are used to develop a formula for a thermal and non-Newtonian (Ree-Eyring) film thickness reduction factor. Results for the maximum surface temperature and traction coefficient are also presented. The thermal effects on film thickness and traction are found to be more pronounced for simple sliding than for combined sliding and rolling conditions.


2021 ◽  
pp. 1-21
Author(s):  
Wassim Habchi

Abstract This work presents a comprehensive numerical study of thermal elastohydrodynamic lubrication performance in axially crowned rollers, based on a full-system finite element approach. Axial crowning has always been introduced to finite line contacts, as a mean for improving film thickness. Its influence on friction has often been overlooked though. The current work reveals that axial crowning has a negative influence on friction, increasing it significantly with respect to the reference case of straight rollers. It is shown that, with increased crowning height (or reduced crowning radius), minimum film thickness is increased, but so is friction. Therefore, film thickness enhancement comes at the expense of a deterioration in friction. Besides, achieving sufficient enhancements in minimum film thickness would require using relatively low crowning radii, which would lead to a substantial increase in friction. The frictional increase is traced back to an overall increase in contact pressures and effective contact area within the lubricating conjunction. It is also shown that, when film thickness is the most critical design parameter, the best compromise between enhanced film thickness and deteriorated friction would be to combine axial crowning with roller-end profiling. However, when friction is the most critical design parameter, a simple roller-end profiling would offer the best compromise.


1991 ◽  
Vol 113 (3) ◽  
pp. 481-491 ◽  
Author(s):  
H. Salehizadeh ◽  
N. Saka

The two-dimensional thermal elastohydrodynamic equations were numerically solved for a Ree-Eyring type lubricant under pure rolling conditions. Profiles of lubricant pressure, film thickness, and temperature were obtained for medium to heavy loads and moderate to high rolling speeds. The pressure results generally show a small secondary peak near the outlet, but at the highest load considered no pressure spike is obtained and the pressure profile is almost Hertzian. The film thickness results show an increase in minimum film thickness with increasing rolling speeds, but at a lesser rate than those predicted for a Newtonian fluid under isothermal conditions. It is found that unless the lubricant becomes non-Newtonian in the inlet region, the reduction in minimum film thickness at high rolling speeds is completely due to thermal effect. The lubricant temperature profile and the amount of heat generated and dissipated in the contact region were also calculated. The lubricant temperature reaches a maximum just before the entrance to the Hertz contact region. Both shear and compression heating are found to be important in raising the lubricant temperature in the inlet. As the lubricant enters the Hertz contact zone, the temperature first drops rapidly, because of the rapid heat conduction to the rollers, and then remains almost constant for most of the Hertz contact. Near the exit where the pressure gradients are large, the lubricant temperature drops rapidly below the ambient because of lubricant expansion. The lubricant then heats up rapidly before leaving the contact area as a result of heat generated by shear stresses.


Author(s):  
Niraj Kumar ◽  
Punit Kumar

An elastohydrodynamic lubrication model is proposed for line contacts under pressurized ambient conditions often encountered in hydraulic pumps, submarine machinery and many other submerged systems. It has been demonstrated that the film forming behavior under such conditions is essentially different from that in conventional elastohydrodynamic lubrication contacts. The numerical simulation results are regressed to develop new central and minimum film thickness equations for Newtonian fluids as functions of ambient pressure, speed, load, and material parameters. An alternative approach is also discussed which involves the use of existing film thickness formulas with ambient viscosity and pressure–viscosity coefficient pertaining to the desired pressure range. A film thickness enhancement of more than 100% over conventional elastohydrodynamic lubrication case is observed. This enhancement is shown to be highly sensitive to the pressure–viscosity coefficient. Besides, the effect of shear-thinning behavior is also investigated and it is found to lower the film thickness enhancement, especially at high ambient pressures.


1994 ◽  
Vol 116 (4) ◽  
pp. 733-740 ◽  
Author(s):  
R. Wolff ◽  
A. Kubo

The Newton-Raphson method was applied to solve the thermal EHD lubrication model of line contacts. By accounting for thermal effects in the Newton-Raphson scheme, a very stable numerical approach was obtained. Two models with viscosity constant and variable across the oil film were developed. The results under extremely heavy conditions of dimensionless load W = 52 * 10−5 (pH = 2 GPa) and dimensionless rolling velocity U = 20 * 10−11 are presented. They show that even for pure rolling, but under heavy load and high rolling velocity conditions, the thermal effects significantly reduce the minimum film thickness. The distributions of pressure, film thickness, and temperature for two rolling velocities and various loads are presented. They indicate that under high rolling velocity conditions the thermal effects have a strong influence on a pressure spike.


2018 ◽  
Vol 70 (9) ◽  
pp. 1766-1773
Author(s):  
Punit Kumar

Purpose The purpose of this paper is to introduce the concept of stationary inlet zone bump (IZB) for film thickness enhancement in unidirectional pure sliding elastohydrodynamic lubrication (EHL) line contacts and to investigate the effects of maximum Hertzian pressure (load) and piezo-viscous response on the effectiveness of IZB. Design/methodology/approach The numerical analysis involves the solution of Reynolds and elasticity equations. The well-established Doolittle–Tait equations are used herein to determine the lubricant viscosity and density as functions of local pressure, while the Carreau model is used to describe the lubricant rheology. The IZB is assumed to have a sinusoidal profile and it is present on the stationary surface. The governing equations are discretized using finite difference scheme and solved using the Newton–Raphson technique. Findings Two test oils, L7808 and SR600, with linear and exponential piezo-viscous responses in the inlet zone are considered here for comparison. The effectiveness of IZB in terms of film thickness enhancement is found to be more for SR600. Besides, IZB is found to be more effective at lower values of maximum Hertzian pressure. The bump needs to shift downstream at higher load to be as effective as at lower load. Originality/value This is the first paper to simulate EHL characteristics in the presence of a stationary IZB and to study the effect of various parameters on EHL effectiveness. The film thickness enhancement obtained here is remarkable and hence it is a novel and valuable contribution.


1977 ◽  
Vol 19 (4) ◽  
pp. 149-156 ◽  
Author(s):  
C. J. Hooke

An analytical solution is presented to the problem of the lubrication of highly deformed contacts, including the effect of pressure on viscosity. It is shown that the character of the lubrication process depends on the value of a single non-dimensional parameter, and that for each value of this parameter there is a unique non-dimensional value for minimum film thickness. Results are presented for general line contacts and for cylindrical contacts.


Author(s):  
C J Hooke

In many line contacts the operating conditions, such as load, entrainment velocity and contact radii, vary with time. Generally, the results from standard elastohydrodynamic lubrication theory, derived for constant conditions, can be used to obtain a quasi-steady prediction of film thickness that is sufficiently accurate for design purposes. An important exception to this is where the entrainment direction changes because, under those conditions, the quasi-steady approach predicts that there will be no clearance between the surfaces while in practice a residual film will persist. A previous paper showed that the minimum film thickness during entrainment reversal depends primarily on the rate of change of entrainment velocity. Limit expressions for the minimum clearance in the four regimes of lubrication were obtained. The present paper is part of a programme to develop a minimum film thickness chart for entrainment reversal and deals with the transition between the rigid-piezoviscous and the elastic-piezoviscous regimes.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
J. Wang ◽  
C. H. Venner ◽  
A. A. Lubrecht

The effect of single-sided and double-sided harmonic surface waviness on the film thickness, pressure, and temperature oscillations in an elastohydrodynamically lubricated eccentric-tappet pair has been investigated in relation to the eccentricity and the waviness wavelength. The results show that, during one working cycle, the waviness causes significant fluctuations of the oil film, pressure, and temperature, as well as a reduction in minimum film thickness. Smaller wavelength causes more dramatic variations in oil film. The fluctuations of the pressure, film thickness, temperature, and traction coefficient caused by double-sided waviness are nearly the same compared with the single-sided waviness, but the variations are less intense.


Sign in / Sign up

Export Citation Format

Share Document