Substructure Methods in Vibration

1995 ◽  
Vol 117 (B) ◽  
pp. 207-213 ◽  
Author(s):  
R. R. Craig

When the response of a structural system to dynamic excitation must be analyzed, a substructure coupling method (or component-mode synthesis method) is frequently employed to reduce the order of the finite element model of the structure. This paper reviews procedures used to formulate component modes for substructures and to assemble substructure models to form reduced-order models of the original system. A brief literature survey covering several applications of substructure coupling is also presented.

1995 ◽  
Vol 117 (B) ◽  
pp. 207-213 ◽  
Author(s):  
R. R. Craig

When the response of a structural system to dynamic excitation must be analyzed, a substructure coupling method (or component-mode synthesis method) is frequently employed to reduce the order of the finite element model of the structure. This paper reviews procedures used to formulate component modes for substructures and to assemble substructure models to form reduced-order models of the original system. A brief literature survey covering several applications of substructure coupling is also presented.


2015 ◽  
Vol 137 (7) ◽  
Author(s):  
Joseph A. Beck ◽  
Jeffrey M. Brown ◽  
Alex A. Kaszynski ◽  
Charles J. Cross ◽  
Joseph C. Slater

New geometric mistuning modeling approaches for integrally bladed rotors (IBRs) are developed for incorporating geometric perturbations to a fundamental disk–blade sector, particularly the disk–blade boundary or connection. Reduced-order models (ROMs) are developed from a Craig–Bampton component mode synthesis (C–B CMS) framework that is further reduced by a truncated set of interface modes that are obtained from an Eigen-analysis of the C–B CMS constraint degrees of freedom (DOFs). An investigation into using a set of tuned interface modes and tuned constraint modes for model reduction is then performed, which offers significant computational savings for subsequent analyses. Two configurations of disk–blade connection mistuning are investigated: as-measured principal component (PC) deviations and random perturbations to the interblade spacing. Furthermore, the perturbation sizes are amplified to investigate the significance of incorporating mistuned disk–blade connections during solid model generation from optically scanned geometries. Free and forced response results are obtained for each ROM and each disk–blade connection type and compared to full finite element model (FEM) solutions. It is shown that the developed methods provide accurate results with a reduction in solution time compared to the full FEM. In addition, results indicate that the inclusion of a mistuned disk–blade connection deviations are small or conditions where large perturbations are localized to a small areas of the disk–blade connection.


Author(s):  
Elise Delhez ◽  
Florence Nyssen ◽  
Jean-Claude Golinval ◽  
Alain Batailly

Abstract This paper investigates the use of different model reduction methods accounting for geometric nonlinearities. These methods are adapted to retain physical degrees-of-freedom in the reduced space in order to ease contact treatment. These reduction methods are applied to a 3D finite element model of an industrial compressor blade (NASA rotor 37). In order to compare the different reduction methods, a scalar indicator is defined. This performance indicator allows to quantify the accuracy of the predicted displacement both locally (at the blade tip) and globally. The robustness of each method with respect to variations of the external excitation is also assessed. The performances of the reduction methods are then compared in the case of frictional contact between the blade tip and the surrounding casing. This work brings evidence that reduced order models provide a computationally efficient alternative to full order finite element models for the accurate prediction of the time response of structures with both distributed and localized nonlinearities.


1989 ◽  
Vol 111 (1) ◽  
pp. 17-26 ◽  
Author(s):  
P. Schwibinger ◽  
R. Nordmann

Turbogenerator sets in operation may be excited to transient torsional vibrations by dynamic electrical moments at the generator due to short-circuits or faulty synchronization. For the solution of the torsional vibration problem it is essential to find an appropriate torsional model of the original system. A common approach is to model the torsional system finely by the finite element method which normally results in a very accurate mechanical model with many degrees of freedom (DOF). However for some applications it is desirable to have a torsional model with a reduced number of DOF which reproduces the original system exactly only in the lower eigenfrequencies and modes. This paper describes a method which allows finding a most accurate reduced torsional model with discrete masses and springs from a finite element model with many DOF. The results for the eigenfrequencies, the modes, and internal moments due to a short-circuit excitation of a 600 MW turbogenerator set are presented. They are compared with other reduction methods.


Author(s):  
Bartolome´ Segui´ ◽  
Euro Casanova

This paper presents a reduced-order modeling technique, based on a component mode synthesis method specifically tailored for bladed disks, that allows the resulting low-order model to be attached to a shaft. Mistuning is included in the bladed disk model and the shaft is modeled using uniaxial finite elements according to the rotordynamic approach. The proposed formulation is applied to an example finite element model of a bladed disk, for both tuned and mistuned blades. Comparisons are made between the reduced model and the full finite element solution for free and forced responses in order to assess the methodology. The forced response amplitudes of the blades are found to vary significantly with the inclusion of a flexible shaft. This work suggest that stage independent analyses might not be adequate for predicting the global dynamic response of rotating assemblies of turbomachines.


2011 ◽  
Vol 133 (5) ◽  
Author(s):  
Olguta Marinescu ◽  
Bogdan I. Epureanu ◽  
Mihaela Banu

Predicting the influence of cracks on the dynamics of bladed disks is a very important challenge. Cracks change the structural response, which in turn changes the crack propagation characteristics. Hence, accurate and computationally effective means to model the dynamics of cracked bladed disks and blisks is particularly crucial in applications such as prognosis, guidance for repairs, characterization after repairs, design, and structural health monitoring. Most current models of bladed disks exploit cyclic symmetry to gain computational efficiency. However, the presence of cracks and mistuning destroys that symmetry and makes computational predictions much more expensive. In this work, we propose a new reduced order modeling methodology that can speed up computations by several orders of magnitude. There are two key components of the new methodology. First, the displacements and deformations of the crack surfaces are not modeled in absolute coordinates but relative coordinates, which allows for an effective model reduction based on (fixed-interface Craig–Bampton) component mode synthesis (CMS). The use of relative coordinates allows one to define one of the components in CMS as the pristine/uncracked structure (with mistuning). This approach is used in combination with a set of accurate approximations for the constraint modes used in CMS. Second, the effects of mistuning are captured by component mode mistuning, which allows the construction of extremely efficient reduced order models for the pristine/uncracked component with mistuning. The novel proposed method is applied to a finite element model of an industrial blisk. The combined presence of mistuning and cracks is shown to have important effects. Also, the proposed approach is shown to provide accurate predictions for the overall blisk while requiring computations using single-sector models only. The influence of various parameters on the accuracy of the reduced order models is investigated. Overall, the results show a very good agreement between full finite element analyses and the proposed reduced order modeling approach.


2013 ◽  
Vol 198 ◽  
pp. 621-626
Author(s):  
Cezary Orlikowski ◽  
Rafał Hein

This paper presents a model reduction technique of a 3-D pipe system with flowing liquid. In the analysis and design of control (mechatronic) systems it is useful to work with simple, low order models. A hybrid reduced order model is proposed. The system model consists of two parts, the modal model and the finite element model.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Yuting Wang ◽  
Marc P. Mignolet

Component-centric reduced order models (ROMs) are introduced here as small-size ROMs providing an accurate prediction of the linear response of part of a structure (the β component) without focusing on the rest of it (the α component). Craig–Bampton (CB) substructuring methods are first considered. In one method, the β component response is modeled with its fixed interface modes while the other adopts singular value eigenvectors of the β component deflections of the linear modes of the entire structure. The deflections in the α component induced by harmonic motions of these β component modes are processed by a proper orthogonal decomposition (POD) to model the α component response. A third approach starts from the linear modes of the entire structure which are dominant in the β component response. Then, the contributions of other modes in this part of the structure are approximated in terms of those of the dominant modes with close natural frequencies and similar mode shapes in the β component, i.e., these nondominant modal contributions are “lumped” onto dominant ones. This lumping permits to increase the accuracy in the β component at a fixed number of modes. The three approaches are assessed on a structural finite element model of a nine-bay panel with the modal lumping-based method yielding the most “compact” ROMs. Finally, good robustness of the ROM to changes in the β component properties (e.g., for design optimization) is demonstrated and a similar sensitivity analysis is carried out with respect to the loading under which the ROM is constructed.


Author(s):  
Olguta Marinescu ◽  
Bogdan I. Epureanu ◽  
Mihaela Banu

Predicting the influence of cracks on the dynamics of bladed disks is a very important challenge. Cracks change the structural response, which in turn changes the crack propagation characteristics. Hence, accurate and computationally effective means to model the dynamics of cracked bladed disks and blisks is particularly crucial in applications such as prognosis, guidance for repairs, characterization after repairs, design, and structural health monitoring. Most current models of bladed disks exploit cyclic symmetry to gain computational efficiency. However, the presence of cracks and mistuning destroys that symmetry and makes computational predictions much more expensive. In this work, we propose a new reduced order modeling methodology which can speed up computations by several orders of magnitude. There are two key components of the new methodology. First, the displacements and deformations of the crack surfaces are not modeled in absolute coordinates but relative coordinates. That allows for an effective model reduction based on (fixed-interface Craig-Bampton) component mode synthesis (CMS). The use of relative coordinates allows one to define one of the components in CMS as the pristine/uncracked structure (with mistuning). This approach is used in combination with a set of accurate approximations for the constraint modes used in CMS. Second, the effects of mistuning are captured by component mode mistuning (CMM) which allows the construction of extremely efficient reduced order models for the pristine/uncracked component with mistuning. The novel proposed method is applied to a finite element model of an industrial blisk. The combined presence of mistuning and cracks is shown to have important effects. Also, the proposed approach is shown to provide accurate predictions for the overall blisk while requiring computations using single-sector models only. The influence of various parameters on the accuracy of the reduced order models is investigated. Overall, the results show a very good agreement between full finite element analyses and the proposed reduced order modeling approach.


Sign in / Sign up

Export Citation Format

Share Document