Controller Design Procedure for Two-Mass Systems With Single Flexible Mode
Many manufacturing machines must execute motions as quickly as possible to achieve profitable high-volume production. Most of them exhibit some flexibility, which makes the settling time longer and controller design difficult. This paper develops a control strategy that combines feedforward and feedback control with command shaping for systems with collocated actuator and sensor. First, a feedback controller is designed to increase damping and eliminate steady-state error. Next, an appropriate reference profile is generated using command-shaping techniques to ensure fast point-to-point motions with minimum residual vibration. Finally, a feedforward controller is designed to speed up the transient response. The proposed proportional-integral-derivative (PID) controller design ensures that two important resonant frequencies nearly match, making the design of the input commands much simpler. The resulting control strategy is successfully demonstrated for a generic dimensionless system that incorporates some modeling errors to assess robustness.