Effects of Crack Starter Bead Preparation in Drop-Weight Test on Nil-Ductility Transition Temperature

1999 ◽  
Vol 121 (2) ◽  
pp. 196-202
Author(s):  
M. Higuchi ◽  
T. Yamauchi ◽  
Y. Tanaka ◽  
K. Iida

The procedure for making crack starter weld deposit on drop-weight test (DWT) specimens was altered from two passes to one pass in about 1990. The effects of some parameters of crack starter weld process on drop-weight test results were studied. Results of this study indicated that length of overlap of the second pass and height of crack starter beads were most effective on nil-ductility temperature (TNDT). When overlap length and bead height of two-pass deposit were small enough, TNDT obtained by two-pass deposit became lower than one-pass TNDT, the discrepancy being by as much as 25°C. TNDT values for 24 Japanese steels were determined using two different DWT methods, one-pass deposit and two-pass deposit having small overlap length and bead height. The difference of TNDT depending on DWT method could be seen only for high-toughness low-alloy steel base metals. For other materials (i.e., low-to-medium-toughness low-alloy steel base metals, weld metals, and high-toughness carbon steels), TNDTS by two-pass and one-pass deposits were essentially the same. For lower-toughness steels, TNDT was frequently lower than the temperature of vTcv − 33°C), and thus, the reference nil-ductility temperature RTNDT was determined from Charpy impact test results. These results can be taken as a way of interpreting the past toughness evaluations made for operating plants using the two-pass TNDT.

1996 ◽  
Vol 69 (3) ◽  
pp. 253-261 ◽  
Author(s):  
A. Moitra ◽  
P.R. Sreenivasan ◽  
S.K. Ray ◽  
S.L. Mannan

Author(s):  
Yuta Honma ◽  
Gen Sasaki ◽  
Kunihiko Hashi

Effects by intercritical quenching, which is quenching from dual-phase of ferrite (α) and austenite (γ) region from 953 to 1068 K, on mechanical properties and microstructures of Cu-containing low alloy steel based on ASTM A707 5L grade (hereafter called A707 modified steel) were investigated using 50 kg test ingots. The mechanical properties of the A707 modified steel, i.e. strength at room temperature and fracture toughness at low temperature, were significantly improved by intercritical quenching. This is probably because its effective grain size decreased by intercritical quenching. Then, the optimum temperature of intercritical quenching for A707 modified steel was 1068 K near the AC3 point. Based on the experimental results of the test ingot, we applied intercritical quenching to a trial full-size forging production of about 20,000 mm in length, and researched the tensile, Charpy impact, crack tip opening displacement (CTOD) and drop weight test (DWT) properties across whole length of the trial production. It was found that the trial production has good mechanical properties across whole length. From the present work, an appropriate intercritical quenching is considered to apply for improvement method of the mechanical properties in A707 modified steel forgings.


2016 ◽  
Vol 715 ◽  
pp. 33-38
Author(s):  
Jonas A. Pramudita ◽  
Masashi Kato ◽  
Yuji Tanabe

Skin laceration injury caused by a penetration of small curvature edge frequently occurs in a domestic accident. An assessment method for this injury is necessary in order to develop a safer manufactured product. To assess the risk of skin laceration injury in a penetration accident, a skin simulant made from silicone rubber was proposed. However, mechanical responses of this skin simulant under dynamic penetration loading have not yet been investigated. In this study, a drop weight penetration test device was developed in order to simulate penetration accidents under impact velocities of over 1 m/s. The device was then used for investigating the dynamic responses of skin simulant against several blades with different tip curvature radii. Load, penetration depth, impulse and energy at rupture were then determined from the test results. Load and penetration depth at rupture increased with the increase of tip curvature radius of the blades. Furthermore, the drop weight test result showed larger response compared to the quasi-static test result which might be caused by the viscous effect and the polymer characteristics such as cross-linking of the skin simulant.


2015 ◽  
Vol 1106 ◽  
pp. 225-228 ◽  
Author(s):  
Stanislav Rehacek ◽  
Petr Hunka ◽  
David Citek ◽  
Jiri Kolisko ◽  
Ivo Simunek

Fibre-reinforced composite materials are becoming important in many areas of technological application. In addition to the static load, such structures may be stressed with short-term dynamic loads or even dynamic impact loads during their lifespan. Impact loading of structural components produces a complex process, where both the characteristics of the design itself and the material parameters influence the resultant behavior. It is clear that fibre reinforced concrete has a positive impact on increasing of the resistance to impact loads. Results of two different impact load tests carried out on drop-weight test machine are presented in this report.


2006 ◽  
pp. 107-115
Author(s):  
Angelika Spalek ◽  
Gerd Reisner ◽  
Ewald Werner ◽  
Andreas Pichler ◽  
Peter Stiaszny

Author(s):  
Mehdi Akhondizadeh ◽  
Masoud Rezaeizadeh

Effects of specimen size and ball size on the breakage throughput under the impact loading are investigated using a drop-weight test machine. Samples are square-shaped building stones ranging 20–60 mm in width and 22–256 g in mass. They include granite, marble, and two types of travertine with the thickness of 15 mm. The impact energies, up to 160 J, are achieved by falling balls in a drop-weight test machine. Several steel balls with the diameter of 60, 84, 96, and 120 mm have been used as an impactor. The ball size is a parameter whose effect on the breakage throughput is investigated here. Results show that the larger specimens have better breakage than the smaller ones at the same specific impact energy. It is also indicated that, at constant specific impact energy, the smaller balls behave more efficiently than the larger balls.


Sign in / Sign up

Export Citation Format

Share Document