Finite Element Analysis of Rolling Contact for Nonlinear Kinematic Hardening Bearing Steel

1995 ◽  
Vol 117 (4) ◽  
pp. 729-736 ◽  
Author(s):  
M. Howell ◽  
G. T. Hahn ◽  
C. A. Rubin ◽  
D. L. McDowell

A Mroz image point, two surface, nonlinear-kinematic-hardening-plastic (MNKP) representation of bearing steel is inserted into a finite element model of 2-dimensional, line contact for pure rolling. The calculations are compared with previous results for the same contact pressure derived for elastic-linear-kinematic-hardening-plastic (ELKP) behavior. The residual stress, deformation, and the connection between continuing cyclic deformation, etching bands, and cracks are analyzed. Unlike the ELKP constitutive properties, the MNKP behavior displays a distinct transient region which results in higher residual stresses.

1991 ◽  
Vol 58 (2) ◽  
pp. 347-353 ◽  
Author(s):  
S. M. Kulkarni ◽  
G. T. Hahn ◽  
C. A. Rubin ◽  
V. Bhargava

This paper describes calculations for repeated, frictionless, three-dimensional rolling contact, for a relative peak pressure (po/k) of 6.0 (above the shakedown limit) for a circular contact patch. This analysis was carried out for two material responses, elastic-perfectly plastic (EPP) and elastic-linear-kinematic-hardening plastic (ELKP), using the elasto-plastic finite element model developed earlier. The ELKP material parameters are those appropriate for hardened bearing steel. Frictionless three-dimensional rolling contact is simulated by repeatedly translating a Hertzian pressure distribution across the surface of an elasto-plastic half space. The half space is represented by a finite mesh with elastic boundaries. The paper describes the complex stress state existing in the half space and the attending plasticity, as the load translates. The calculations present the distortion of the rim, the residual stress-strain distributions, stress-strain histories, and the cyclic plastic strain increments in the vicinity of the contact. Compared with the analyses at the shakedown limit, higher residual stresses and strains are observed.


1990 ◽  
Vol 57 (1) ◽  
pp. 57-65 ◽  
Author(s):  
S. M. Kulkarni ◽  
G. T. Hahn ◽  
C. A. Rubin ◽  
V. Bhargava

This paper describes a three-dimensional elastoplastic finite element model of repeated, frictionless rolling contact. The model treats a sphere rolling on an elastic-perfectly plastic and an elastic-linear-kinematic-hardening plastic, semi-infinite half space. The calculations are for a relative peak pressure (po/k) = 4.68 (the theoretical shakedown limit for perfect plasticity). Three-dimensional rolling contact is simulated by repeatedly translating a hemispherical (Hertzian) pressure distribution across an elastoplastic semi-infinite half space. The semi-infinite half space is represented by a finite mesh with elastic boundaries. The calculations describe the distortion of the rim, the residual stress-strain distributions, stress-strain histories, and the cyclic plastic strain ranges in the vicinity of the contact.


1991 ◽  
Vol 113 (1) ◽  
pp. 93-101 ◽  
Author(s):  
S. M. Kulkarni ◽  
C. A. Rubin ◽  
G. T. Hahn

The present paper, describes a transient translating elasto-plastic thermo-mechanical finite element model to study 2-D frictional rolling contact. Frictional two-dimensional contact is simulated by repeatedly translating a non-uniform thermo-mechanical distribution across the surface of an elasto-plastic half space. The half space is represented by a two dimensional finite element mesh with appropriate boundaries. Calculations are for an elastic-perfectly plastic material and the selected thermo-physical properties are assumed to be temperature independent. The paper presents temperature variations, stress and plastic strain distributions and deformations. Residual tensile stresses are observed. The magnitude and depth of these stresses depends on 1) the temperature gradients and 2) the magnitudes of the normal and tangential tractions.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 575
Author(s):  
Shen Liu ◽  
Xiaobiao Shan ◽  
Hengqiang Cao ◽  
Tao Xie

Ultrasonic drawing is a new technology to reduce the cross-section of a metallic tube, wire or rod by pulling through vibrating dies. The addition of ultrasound is beneficial for reducing the drawing force and enhancing the surface finish of the drawn wire, but the underlying mechanism has not been fully understood. In this paper, an axisymmetric finite element model of the single-pass ultrasonic drawing was established in commercial FEM software based on actual wire length. The multi-linear kinematic hardening (MKINH) model was used to define the elastic and plastic characteristics of titanium. Influences of ultrasonic vibration on the drawing process were investigated in terms of four factors: location of the die, ultrasonic amplitude, drawing velocity, and friction coefficient within the wire-die contact zone. Mises stresses, as well as contact and friction stress, in conventional and ultrasonic drawing conditions, were compared. The results show that larger ultrasonic amplitude and lower drawing velocity contribute to greater drawing force reduction, which agrees with former research. However, their effectiveness is further influenced by the location of the die. When ultrasonic amplitude and drawing speed remain unchanged, the drawing force is minimized when the die locates at the half-wavelength position, while maximized at the quarter-wavelength position.


2012 ◽  
Vol 591-593 ◽  
pp. 766-770 ◽  
Author(s):  
Rui Tao Peng ◽  
Fang Lu ◽  
Xin Zi Tang ◽  
Yuan Qiang Tan

In order to reveal the adjustment principle of prestressed cutting on the residual stress of hardened bearing steel GCr15, a three-dimensional thermal elastic-viscoplastic finite element model was developed using an Arbitrary Lagrangian Eulerian (ALE) formulation. Several key simulation techniques including the material constitutive model, constitutive damage law and contact with friction were discussed, simulation of chip formation during prestressed cutting was successfully conducted. At the prestresses of 0 MPa, 341 MPa and 568 MPa, distributions of residual stress on machined surface were simulated and experimentally verified. The results indicated that residual compressive stress on machined surface were achieved and actively adjusted by utilizing the prestressed cutting method; meanwhile, within the elastic limit of bearing steel material, the higher applied prestress leads to the more prominent compressive residual stress in the surface layer and subsequently the higher fatigue resistance of the part.


1985 ◽  
Vol 52 (1) ◽  
pp. 67-74 ◽  
Author(s):  
V. Bhargava ◽  
G. T. Hahn ◽  
C. A. Rubin

This paper describes a two-dimensional (plane strain) elastic-plastic finite element model of rolling contact that embodies the elastic-perfectly plastic, cycle and amplitude-independent material of the Merwin and Johnson theory, but is rigorous with respect to equilibrium and continuity requirements. The rolling contact is simulated by translating a semielliptical pressure distribution. Both Hertzian and modified Hertzian pressure distributions are used to estimate the effect of plasticity on contact width and the continuity of the indentor-indentation interface. The model is tested for its ability to reproduce various features of the elastic-plastic indentation problem and the stress and strain states of single rolling contacts. This paper compares the results derived from the finite element analysis of a single, frictionless rolling contact at p0/k = 5 with those obtained from the Merwin and Johnson analysis. The finite element calculations validate basic assumptions made by Merwin and Johnson and are consistent with the development of “forward” flow. However, the comparison also reveals significant differences in the distribution of residual stress and strain components after a single contact cycle.


1988 ◽  
Vol 110 (1) ◽  
pp. 44-49 ◽  
Author(s):  
G. Ham ◽  
C. A. Rubin ◽  
G. T. Hahn ◽  
V. Bhargava

The stresses, strains, and deformations produced by repeated, two-dimensional rolling-sliding contact are analyzed using a modified finite element model developed by Bhargava et al. [1]. Rolling and sliding are simulated by translating an appropriate set of normal and tangential surface tractions across an elastic-perfectly plastic half space. The study examines a peak-pressure-to-shear strength ratio of po/k = 4.5 and normal to tangential force ratios of T/N = 0.20 and T/N = 0.17. The calculations describe the residual stresses, displacements and the continuing cyclic radial, shear and equivalent strains generated at various depths in the rim. The results are compared with previous calculations by Johnson and Jefferis [2] of rolling-sliding contact and with pure rolling. The present work predicts much higher deformations than previously calculated.


1987 ◽  
Vol 109 (4) ◽  
pp. 618-626 ◽  
Author(s):  
G. T. Hahn ◽  
V. Bhargava ◽  
C. A. Rubin ◽  
Q. Chen ◽  
K. Kim

Measurements of the cyclic stress-strain hysteresis loop shapes of hardened, HRC-62, SAE 52100 bearing steel, derived from torsion tests are presented. These are reduced to 3-parameter, elastic-linear-kinematic hardening-plastic (ELKP) representations. The ELKP behavior and properties of the steel are employed in an elastic-plastic finite element model of two dimensional, rolling contact. The distortion of the rim and the distribution and magnitude of the residual stresses and cyclic plasticity for repeated contacts at a Hertzian pressure of p0 = 3636 MPa (528 ksi), are calculated. The results are compared with the residual stresses and other features observed in the inner raceway of SAE 52100 steel, deep grooved ball bearings. The calculations predict the modest residual stresses observed in the early life: N ≲ 106 contacts. The much higher levels of residual stress that develop in later life: 108 ≲ N ≲ 1010, are shown to be connected with metallurgical changes and an attending volume expansion that are cyclic strain induced. The origins of these stresses and their effect on bearing life are discussed.


2012 ◽  
Vol 134 (4) ◽  
Author(s):  
E. Troiano ◽  
J. H. Underwood ◽  
A. M. Venter ◽  
J. H. Izzo ◽  
J. M. Norray

Ideal isotropic or kinematic hardening is often utilized in order to simplify the modeling of the loading and reverse loading behavior of materials when using finite element analysis. Unfortunately, this simplification can result in significant error if the material exhibits the Bauschinger effect (BE), which is the loss of strength of the material upon reverse loading. The error associated with this simplification is further compounded in heavily autofrettaged, Cr-Mo-V, thick walled cylinders due to the fact that the Bauschinger effect and the reverse loading strain hardening exponent are a strong function of the initial applied plastic strains, which can vary significantly throughout the wall of the cylinder.


2001 ◽  
Author(s):  
Veli-Matti Järvenpää ◽  
Erno K. Keskinen

Abstract In this paper a finite element model of a rotating paper machine roll for nip unit rolling contact analyses is discussed. This work presented here is based on the earlier work of the authors presented in [1] and [2]. The major motivations for developing a tailored FE-model including the large spin rotation are firstly to include the complex vibration phenomena as the shell vibrations of the roll structure in the analyses and secondly to reduce the computational costs of the numerical simulations due to the large number of degrees of freedom. The approach used is the use of the modal analysis i.e. to express the dynamics of the roll in terms of the lowest eigenmodes. The equations of motion are at first written in the rotating coordinates and then in addition to this the equations are expressed by using the modal coordinates. Numerical tests executed show that this modeling technique reduces computational costs significantly. Furthermore, use of the (semidefinite) eigenmode basis maintains the vibration characteristics of the roll structure. For verification purposes a test model was constructed and these simulation results were compared to the standard geometrically non-linear finite element analysis.


Sign in / Sign up

Export Citation Format

Share Document