activation area
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 6)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Rongxia Wang ◽  
Malik Bader Alazzam ◽  
Fawaz Alassery ◽  
Ahmed Almulihi ◽  
Marvin White

Predicting the trajectories of neighboring vehicles is essential to evade or mitigate collision with traffic participants. However, due to inadequate previous information and the uncertainty in future driving maneuvers, trajectory prediction is a difficult task. Recently, trajectory prediction models using deep learning have been addressed to solve this problem. In this study, a method of early warning is presented using fuzzy comprehensive evaluation technique, which evaluates the danger degree of the target by comprehensively analyzing the target’s position, horizontal and vertical distance, speed of the vehicle, and the time of the collision. Because of the high false alarm rate in the early warning systems, an early warning activation area is established in the system, and the target state judgment module is triggered only when the target enters the activation area. This strategy improves the accuracy of early warning, reduces the false alarm rate, and also speeds up the operation of the early warning system. The proposed system can issue early warning prompt information to the driver in time and avoid collision accidents with accuracy up to 96%. The experimental results show that the proposed trajectory prediction method can significantly improve the vehicle network collision detection and early warning system.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2711
Author(s):  
Dariusz Korzec ◽  
Thomas Andres ◽  
Eva Brandes ◽  
Stefan Nettesheim

The treatment of a polymer surface using an atmospheric pressure plasma jet (APPJ) causes a local increase of the surface free energy (SFE). The plasma-treated zone can be visualized with the use of a test ink and quantitatively evaluated. However, the inked area is shrinking with time. The shrinkage characteristics are collected using activation image recording (AIR). The recording is conducted by a digital camera. The physical mechanisms of activation area shrinkage are discussed. The error sources are analyzed and methods of error reduction are proposed. The standard deviation of the activation area is less than 3%. Three polymers, acrylonitrile butadiene styrene (ABS), high-density polyethylene (HDPE), and polyoxymethylene (POM), are examined as a test substrate material. Due to a wide variation range of SFE and a small hydrophobic recovery, HDPE is chosen. Since the chemical mixtures tend to temporal changes of the stoichiometry, the pure formamide test ink with 58 mN/m is selected. The method is tested for the characterization of five different types of discharge: (i) pulsed arc APPJ with the power of about 700 W; (ii) piezoelectric direct discharge APPJ; (iii) piezoelectric driven needle corona in ambient air; (iv) piezoelectric driven plasma needle in argon; and (v) piezoelectric driven dielectric barrier discharge (DBD). For piezoelectrically driven discharges, the power was either 4.5 W or 8 W. It is shown how the AIR method can be used to solve different engineering problems.


2021 ◽  
Vol 118 (20) ◽  
pp. e2021571118
Author(s):  
Kiersten Elizabeth Scott ◽  
Stephanie I. Fraley ◽  
Padmini Rangamani

YAP/TAZ is a master regulator of mechanotransduction whose functions rely on translocation from the cytoplasm to the nucleus in response to diverse physical cues. Substrate stiffness, substrate dimensionality, and cell shape are all input signals for YAP/TAZ, and through this pathway, regulate critical cellular functions and tissue homeostasis. Yet, the relative contributions of each biophysical signal and the mechanisms by which they synergistically regulate YAP/TAZ in realistic tissue microenvironments that provide multiplexed input signals remain unclear. For example, in simple two-dimensional culture, YAP/TAZ nuclear localization correlates strongly with substrate stiffness, while in three-dimensional (3D) environments, YAP/TAZ translocation can increase with stiffness, decrease with stiffness, or remain unchanged. Here, we develop a spatial model of YAP/TAZ translocation to enable quantitative analysis of the relationships between substrate stiffness, substrate dimensionality, and cell shape. Our model couples cytosolic stiffness to nuclear mechanics to replicate existing experimental trends, and extends beyond current data to predict that increasing substrate activation area through changes in culture dimensionality, while conserving cell volume, forces distinct shape changes that result in nonlinear effect on YAP/TAZ nuclear localization. Moreover, differences in substrate activation area versus total membrane area can account for counterintuitive trends in YAP/TAZ nuclear localization in 3D culture. Based on this multiscale investigation of the different system features of YAP/TAZ nuclear translocation, we predict that how a cell reads its environment is a complex information transfer function of multiple mechanical and biochemical factors. These predictions reveal a few design principles of cellular and tissue engineering for YAP/TAZ mechanotransduction.


2020 ◽  
Author(s):  
Kiersten E. Scott ◽  
Stephanie I. Fraley ◽  
Padmini Rangamani

ABSTRACTYAP/TAZ is a master regulator of mechanotransduction whose functions rely on translocation from the cytoplasm to the nucleus in response to diverse physical cues. Substrate stiffness, substrate dimensionality, and cell shape are all input signals for YAP/TAZ, and through this pathway, regulate critical cellular functions and tissue homeostasis. Yet, the relative contributions of each biophysical signal and the mechanisms by which they synergistically regulate YAP/TAZ in realistic tissue microenvironments that provide multiplexed input signals remains unclear. For example, in simple 2D culture, YAP/TAZ nuclear localization correlates strongly with substrate stiffness, while in 3D environments, YAP/TAZ translocation can increase with stiffness, decrease with stiffness, or remain unchanged. Here, we develop a spatial model of YAP/TAZ translocation to enable quantitative analysis of the relationships between substrate stiffness, substrate dimensionality, and cell shape. Our model couples cytosolic stiffness to nuclear mechanics to replicate existing experimental trends, and extends beyond current data to predict that increasing substrate activation area through changes in culture dimensionality, while conserving cell volume, forces distinct shape changes that result in nonlinear effect on YAP/TAZ nuclear localization. Moreover, differences in substrate activation area versus total membrane area can account for counterintuitive trends in YAP/TAZ nuclear localization in 3D culture. Based on this multiscale investigation of the different system features of YAP/TAZ nuclear translocation, we predict that how a cell reads its environment is a complex information transfer function of multiple mechanical and biochemical factors. These predictions reveal design principles of cellular and tissue engineering for YAP/TAZ mechanotransduction.STATEMENT OF SIGNIFICANCEIn chemical engineering, a transfer function is a mathematical function that models the output of a reactor for all possible inputs, and enables the reliable design and operation of complex reaction systems. Here, we apply this principle to cells to derive the transfer function by which substrate stiffness is converted into YAP/TAZ nuclear localization. This function is defined by a spatial model of the YAP/TAZ mechano-chemical sensing network, wherein key spatial and physical inputs to the system, namely cell and nuclear shape, surface area to volume ratios of cytoplasmic and nuclear compartments, substrate dimensionality, substrate activation area, and substrate stiffness, are all integrated. The resulting model accounts for seemingly contradictory experimental trends and lends new insight into controlling YAP/TAZ signalling.


2020 ◽  
Vol 10 (17) ◽  
pp. 6142
Author(s):  
Hyung-Sik Kim ◽  
Ji-Hun Jo ◽  
Je-Hyeop Lee ◽  
Jin-Ju Jung ◽  
Ki-Han Kim ◽  
...  

In this study, we measured neuronal activation in the primary somatosensory area (S1) and Brodmann area 3 (BA3) using 3T functional magnetic resonance imaging (fMRI) while presenting a 250-Hz high-frequency vibrational stimulus to each of three phalanges (distal, intermediate, and proximal) of four fingers of the right hand (index, middle, ring, and little). We compared the nerve activation area between each finger and each phalange. Ten healthy male college students (26.6 ± 2.5 years old) participated in this study. One session consisted of three blocks: a rest (30 s), stimulation (30 s), and response phase (9 s). In the rest phase, the vibrational stimulus was not presented. In the stimulation phase, the vibrational stimulation was presented at any one of the three phalanges of the selected finger. In the response phase, subjects were instructed to press a button corresponding to the phalange that they thought had received the vibration. The subtraction method was used to extract the activation area. The activation area in the S1 was the largest when the little finger was stimulated (for the finger comparison), and largest when the second phalange was stimulated (for the phalange comparison). The BA3 showed similar trends, and there was no statistically significant difference.


Medicine ◽  
2015 ◽  
Vol 94 (38) ◽  
pp. e1657 ◽  
Author(s):  
Mi-Hyun Choi ◽  
Hyung-Sik Kim ◽  
Ji-Hye Baek ◽  
Jung-Chul Lee ◽  
Sung-Jun Park ◽  
...  

2013 ◽  
Vol 34 (4) ◽  
pp. E6 ◽  
Author(s):  
Bornali Kundu ◽  
Amy Penwarden ◽  
Joel M. Wood ◽  
Thomas A. Gallagher ◽  
Matthew J. Andreoli ◽  
...  

Object Functional MRI (fMRI) has the potential to be a useful presurgical planning tool to treat patients with primary brain tumor. In this study the authors retrospectively explored relationships between language-related postoperative outcomes in such patients and multiple factors, including measures estimated from task fMRI maps (proximity of lesion to functional activation area, or lesion-to-activation distance [LAD], and activation-based language lateralization, or lateralization index [LI]) used in the clinical setting for presurgical planning, as well as other factors such as patient age, patient sex, tumor grade, and tumor volume. Methods Patient information was drawn from a database of patients with brain tumors who had undergone preoperative fMRI-based language mapping of the Broca and Wernicke areas. Patients had performed a battery of tasks, including word-generation tasks and a text-versus-symbols reading task, as part of a clinical fMRI protocol. Individually thresholded task fMRI activation maps had been provided for use in the clinical setting. These clinical imaging maps were used to retrospectively estimate LAD and LI for the Broca and Wernicke areas. Results There was a relationship between postoperative language deficits and the proximity between tumor and Broca area activation (the LAD estimate), where shorter LADs were related to the presence of postoperative aphasia. Stratification by tumor location further showed that for posterior tumors within the temporal and parietal lobes, more bilaterally oriented Broca area activation (LI estimate close to 0) and a shorter Wernicke area LAD were associated with increased postoperative aphasia. Furthermore, decreasing LAD was related to decreasing LI for both Broca and Wernicke areas. Preoperative deficits were related to increasing patient age and a shorter Wernicke area LAD. Conclusions Overall, LAD and LI, as determined using fMRI in the context of these paradigms, may be useful indicators of postsurgical outcomes. Whereas tumor location may influence postoperative deficits, the results indicated that tumor proximity to an activation area might also interact with how the language network is affected as a whole by the lesion. Although the derivation of LI must be further validated in individual patients by using spatially specific statistical methods, the current results indicated that fMRI is a useful tool for predicting postoperative outcomes in patients with a single brain tumor.


2012 ◽  
Vol 548 ◽  
pp. 828-832
Author(s):  
Ching Tien Shih ◽  
Ching Hsiang Shih ◽  
Nai Ren Guo

The latest research adopted software technology to redesign mouse drive, and proposed an Automatic Pointing Assistive Program (APAP) to evaluate whether two children with developmental disabilities and people with disabilities would be able to improve their pointing efficiency. The APAP is designed to move a cursor to a target instantaneously once the cursor nears a target (inside the activation area). However, the evaluation of latest researches focused only on people with disabilities. This work exhaustively examined the cursor-capturing functions in a target-positioning task with APAP. The APAP functions are expected to help aged users and novices in operating a mouse efficiently and easily.


Sign in / Sign up

Export Citation Format

Share Document