Effective Tools for Diagnosing Elusive Turbomachinery Dynamics Problems in the Field

1990 ◽  
Vol 112 (4) ◽  
pp. 470-477 ◽  
Author(s):  
H. R. Simmons ◽  
A. J. Smalley

This paper describes and discusses techniques that can effectively diagnose dynamics problems in turbomachinery. A variety of elusive dynamics problems are identified that require definition, quantification, diagnosis, and monitoring. The state of the art in measurement and signal processing techniques is discussed with reference to such factors as the directness of the measurement, the degree of intrusion required, the difficulty of installation, and the reliability or durability of the sensor. Several examples of techniques are provided that have proved to be effective in diagnosing elusive dynamics problems; some examples allow comparison of alternative techniques with different degrees of effectiveness. Problems addressed include rotating stall in the compressor section of a gas turbine, coupled lateral/torsional vibration in a gas turbine driven pipeline compressor, forced vibration of combustor parts, strain gage telemetry of blade vibrations, and nonintrusive measurement of blade vibrations using bearing-mounted accelerometers.

Author(s):  
Harold R. Simmons ◽  
Anthony J. Smalley

This paper describes and discusses techniques which can effectively diagnose dynamics problems in turbomachinery. A variety of elusive dynamics problems are identified which require definition, quantification, diagnosis, and monitoring. The state of the art in measurement and signal processing techniques is discussed with reference to such factors as the directness of the measurement, the degree of intrusion required, the difficulty of installation, and the reliability or durability of the sensor. Several examples of techniques are provided which have proved to be effective in diagnosing elusive dynamics problems; some examples allow comparison of alternative techniques with different degrees of effectiveness. Problems addressed include rotating stall in the compressor section of a gas turbine, coupled lateral/torsional vibration in a gas turbine driven pipeline compressor, forced vibration of combustor parts, strain gage telemetry of blade vibrations, and nonintrusive measurement of blade vibrations using bearing mounted accelerometers.


Vibration ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 174-186 ◽  
Author(s):  
Kanwar Bharat Singh ◽  
Saied Taheri

Tire mounted sensors are emerging as a promising technology, capable of providing information about important tire states. This paper presents a survey of the state-of-the-art in the field of smart tire technology, with a special focus on the different signal processing techniques proposed by researchers to estimate the tire load and slip angle using tire mounted accelerometers. Next, details about the research activities undertaken as part of this study to develop a smart tire are presented. Finally, novel algorithms for estimating the tire load and slip angle are presented. Experimental results demonstrate the effectiveness of the proposed algorithms.


Author(s):  
Seung-Hyun Kong

High sensitivity and fast acquisition are two important goals that must be considered in the development of signal processing techniques for a GNSS acquisition function to meet the demands for LBS in GNSS-challenged environments, such as indoor and urban canyon. This chapter introduces the fundamentals of GNSS acquisition functions, GNSS acquisition techniques for new GNSS signals, and GNSS acquisition techniques achieving high sensitivity and fast acquisition. Therefore, this chapter contains useful information for engineers who study the fundamentals and principles of GNSS acquisition and the state-of-the-art GNSS signal acquisition techniques for weak signals.


1982 ◽  
Vol 36 (1) ◽  
pp. 43-55
Author(s):  
Patrick J. Hui

Four different signal processing techniques applicable to GPS geodetic equipment are considered in this paper. These are: pseudorange measurements, integrated Doppler counts, carrier phase measurements and interferometric measurements. Hardware requirements and error budgets are reviewed. Inherent performance limitations of each technique and design trade-offs involved in attempting to achieve the full performance potential, using state-of-the-art electronics are discussed. The above provides a basis for comparative analysis of those signal processing techniques applied to GPS geodetic equipment.


Author(s):  
Carlo Alberto Niccolini Marmont Du Haut Champ ◽  
Mario Luigi Ferrari ◽  
Paolo Silvestri ◽  
Aristide Fausto Massardo

Abstract The present paper shows signal processing techniques applied to experimental data obtained from a T100 microturbine connected with different volume sizes. This experimental activity was conducted by means of the test rig developed at the University of Genoa for hybrid systems emulation. However, these results can be extended to all advanced cycles in which a microturbine is connected with additional external components which lead to an increase of the plant volume size. Since in this case a 100 kW microturbine was used, the volume was located between the heat recovery unit outlet and the combustor inlet like in the typical cases related to small size plants. A modular vessel was used to perform and to compare the tests with different volume sizes. The main results reported in this paper are related to rotating stall and surge operations. This analysis was carried out to extend the knowledge about these risk conditions: the systems equipped with large volume size connected to the machine present critical issues related to surge and stall prevention, especially during transient operations towards low mass flow rate working conditions. Investigations conducted on acoustic and vibrational measurements can provide interesting diagnostic and predictive solutions by means of suitable instability quantifiers which are extracted from microphone and accelerometer data signals. Hence different possible tools for rotating stall and incipient surge identification were developed through the use of different signal processing techniques, such as Wavelet analysis and Higher Order Statistics Analysis (HOSA) methods. Indeed, these advanced techniques are necessary to maximize all the information conveyed by acquired signals, particularly in those environments in which measured physical quantities are hidden by strong noise, including both broadband background one (i.e. typical random noise) but also uninteresting components associated to the signal of interest. For instance, in complex coupled physical systems like the one it is meant to be studied, which do not satisfy the hypothesis of linear and Gaussian processes inside them, it is reasonable to exploit these kinds of tools, instead of the classical Fast Fourier Transform (FFT) technique by itself, which is mainly adapt for linear systems periodic analysis. The proposed techniques led to the definition of a quantitative indicator, the sum of all auto-bispectrum components modulus in the subsynchronous range, which was proven to be reliable in predicting unstable operation. This can be used as an input for diagnostic systems for early surge detection. Furthermore, the presented methods will allow the definition of some new features complementary with the ones obtainable from conventional techniques, in order to improve control systems reliability and to avoid false positives.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Carlo Alberto Niccolini Marmont Du Haut Champ ◽  
Paolo Silvestri ◽  
Mario Luigi Ferrari ◽  
Aristide Fausto Massardo

Abstract This paper shows signal processing techniques applied to experimental data obtained from a T100 microturbine connected with different volume sizes. This experimental activity was conducted by means of the test rig developed at the University of Genoa for hybrid systems emulation. However, these results can be extended to all advanced cycles in which a microturbine is connected with additional external components which lead to an increase of the plant volume size. Since in this case a 100 kW microturbine was used, the volume was located between the heat recovery unit outlet and the combustor inlet like in the typical cases related to small size plants. A modular vessel was used to perform and to compare the tests with different volume sizes. The main results reported in this paper are related to rotating stall and surge operations. This analysis was carried out to extend the knowledge about these risk conditions: the systems equipped with large volume size connected to the machine present critical issues related to surge and stall prevention, especially during transient operations toward low mass flowrate working conditions. Investigations conducted on acoustic and vibrational measurements can provide interesting diagnostic and predictive solutions by means of suitable instability quantifiers which are extracted from microphone and accelerometer data signals. Hence, different possible tools for rotating stall and incipient surge identification were developed through the use of different signal processing techniques, such as wavelet analysis and higher order statistics analysis (HOSA) methods. Indeed, these advanced techniques are necessary to maximize all the information conveyed by acquired signals, particularly in those environments in which measured physical quantities are hidden by strong noise, including both broadband background one (i.e., typical random noise) but also uninteresting components associated with the signal of interest. For instance, in complex coupled physical systems like the one it is meant to be studied, which do not satisfy the hypothesis of linear and Gaussian processes inside them, it is reasonable to exploit these kinds of tools, instead of the classical fast Fourier transform (FFT) technique by itself, which is mainly adapt for linear systems periodic analysis. The proposed techniques led to the definition of a quantitative indicator, the sum of all autobispectrum components modulus in the subsynchronous range, which was proven to be reliable in predicting unstable operation. This can be used as an input for diagnostic systems for early surge detection. Furthermore, the presented methods will allow the definition of some new features complementary with the ones obtainable from conventional techniques, in order to improve control systems reliability and to avoid false positives.


Author(s):  
Abdenour Soualhi ◽  
Yasmine Hawwari ◽  
Kamal Medjaher ◽  
Guy Clerc ◽  
Razik Hubert ◽  
...  

The reliability and safety of industrial equipments are one of the main objectives of companies to remain competitive in sectors that are more and more exigent in terms of cost and security. Thus, an unexpected shutdown can lead to physical injury as well as economic consequences. This paper aims to show the emergence of the Prognostics and Health Management (PHM) concept in the industry and to describe how it comes to complement the different maintenance strategies. It describes the benefits to be expected by the implementation of signal processing, diagnostic and prognostic methods in health-monitoring. More specifically, this paper provides a state of the art of existing signal processing techniques that can be used in the PHM strategy. This paper allows showing the diversity of possible techniques and choosing among them the one that will define a framework for industrials to monitor sensitive components like bearings and gearboxes.


Sign in / Sign up

Export Citation Format

Share Document