Erratum: “Comparative Studies on Nonlinear Hyperbolic and Parabolic Heat Conduction for Various Boundary Conditions: Analytic and Numerical Solutions” (ASME Journal of Heat Transfer, 1992, 114, pp. 14–20)

1993 ◽  
Vol 115 (3) ◽  
pp. 548-548
Author(s):  
A. Kar ◽  
C. L. Chan ◽  
J. Mazumder
Author(s):  
Irfan Anjum Badruddin

Purpose The purpose of this paper is to investigate the heat transfer in an arbitrary cavity filled with porous medium. The geometry of the cavity is such that an isothermal heating source is placed centrally at the bottom of the cavity. The height and width of the heating source is varied to analyses its effect on the heat transfer characteristics. The investigation is carried out for three different cases of outer boundary conditions such as two outside vertical walls being maintained at cold temperature To, two vertical and top horizontal surface being heated to. To and the third case with top surface kept at To but other surfaces being adiabatic. Design/methodology/approach Finite element method is used to solve the governing equations. Findings It is observed that the cavity exhibits unique heat transfer behavior as compared to regular cavity. The cases of boundary conditions are found to affect the heat transfer rate in the porous cavity. Originality/value This is original work representing the heat transfer in irregular porous cavity with various boundary conditions. This work is neither being published nor under review in any other journal.


Author(s):  
Koji Nishi ◽  
Tomoyuki Hatakeyama ◽  
Shinji Nakagawa ◽  
Masaru Ishizuka

The thermal network method has a long history with thermal design of electronic equipment. In particular, a one-dimensional thermal network is useful to know the temperature and heat transfer rate along each heat transfer path. It also saves computation time and/or computation resources to obtain target temperature. However, unlike three-dimensional thermal simulation with fine pitch grids and a three-dimensional thermal network with sufficient numbers of nodes, a traditional one-dimensional thermal network cannot predict the temperature of a microprocessor silicon die hot spot with sufficient accuracy in a three-dimensional domain analysis. Therefore, this paper introduces a one-dimensional thermal network with average temperature nodes. Thermal resistance values need to be obtained to calculate target temperature in a thermal network. For this purpose, thermal resistance calculation methodology with simplified boundary conditions, which calculates thermal resistance values from an analytical solution, is also introduced in this paper. The effectiveness of the methodology is explored with a simple model of the microprocessor system. The calculated result by the methodology is compared to a three-dimensional heat conduction simulation result. It is found that the introduced technique matches the three-dimensional heat conduction simulation result well.


2013 ◽  
Vol 17 (2) ◽  
pp. 581-589 ◽  
Author(s):  
Jordan Hristov ◽  
Ganaoui El

Simple 1-D semi-infinite heat conduction problems enable to demonstrate the potential of the fractional calculus in determination of transient thermal impedances under various boundary conditions imposed at the interface (x=0). The approach is purely analytic and very effective because it uses only simple semi-derivatives (half-time) and semi-integrals and avoids development of entire domain solutions. 0x=


2015 ◽  
Vol 137 (10) ◽  
Author(s):  
A. Amiri Delouei ◽  
M. Norouzi

The current study presents an exact analytical solution for unsteady conductive heat transfer in multilayer spherical fiber-reinforced composite laminates. The orthotropic heat conduction equation in spherical coordinate is introduced. The most generalized linear boundary conditions consisting of the conduction, convection, and radiation heat transfer is considered both inside and outside of spherical laminate. The fibers' angle and composite material in each lamina can be changed. Laplace transformation is employed to change the domain of the solutions from time into the frequency. In the frequency domain, the separation of variable method is used and the set of equations related to the coefficients of Fourier–Legendre series is solved. Meromorphic function technique is utilized to determine the complex inverse Laplace transformation. Two functional cases are presented to investigate the capability of current solution for solving the industrial unsteady problems in different arrangements of multilayer spherical laminates.


1992 ◽  
Vol 114 (4) ◽  
pp. 924-927 ◽  
Author(s):  
Y. Asako ◽  
H. Nakamura ◽  
Y. Yamaguchi ◽  
M. Faghri

Numerical solutions are obtained for a three-dimensional natural convection heat transfer problem in a vertical porous layer with a hexagonal honeycomb core. The porous layer is assumed to be long and wide such that the velocity and temperature fields repeat themselves in successive enclosures. The natural convection problem is solved for only one honeycomb enclosure with periodic thermal boundary conditions. The porous layer is assumed to be homogeneous and isotropic and the flow is obtained by using the Darcian model. The numerical methodology is based on an algebraic coordinate transformation technique, which maps the hexagonal cross section onto a rectangle. The transformed governing equations are solved with the SIMPLE algorithm. The calculations are performed for the Darcy–Rayleigh number in the range of 10 to 103 and for eight values of the aspect ratio (H/L = 0.25, 0.333, 0.5, 0.7, 1, 1.4, 2, and 5). Two types of thermal boundary condition for the honeycomb core wall are considered: conduction and adiabatic honeycomb core wall thermal boundary conditions. The results are presented in the form of average and local heat transfer coefficients and are compared with the corresponding values for two and three-dimensional rectangular enclosures.


If the solution, of the heat conduction equation θ τ ( 0 ) = θ ξ ξ ( 0 ) , ξ > 0 , τ > 0 of a chemically ‘inert’ material is known, then an approximate formula for the explosion time, ד expl. , of an explosive satisfying the heat conduction equation with zero order reaction, θ ד = θ ξξ +exp(-1/θ), ξ > 0, ד 0, and the same initial and boundary conditions as the ‘inert’, is given by the root of the equation, − ∂ θ ( 0 ) ( ξ , τ expt . ) / ∂ ξ | ξ − 0 = ∫ 0 ∞ exp ⁡ [ − 1 / θ ( 0 ) ( ξ , τ expl . ) ] d ξ provided 1/θ (0) (ξ, ד) is suitably expanded about the surface ξ = 0 such that the integrand vanishes as ξ→∞. Similar results hold for one-dimensional cylindrically and spherically symmetric problems. The derivation of the explosion criterion is based on observation of existing numerical solutions where it is seen that (i) almost to the onset of explosion, the solution θ(ξ, ד )does not differ appreciably from θ (0) (ξ, ד ) (ii) the onset of explosion is indicated by the appearance of a temperature maximum at the surface. Simple formulas for ד expl. readily obtainable for a wide variety of boundary conditions, are given for seven sample problems. Among these are included a semi-infinite explosive with constant surface flux, convective surface heat transfer, and constant surface temperature with and without subsurface melting. The derived values of ד expl. are in satisfactory agreement with those obtained from finite-difference solutions for the problems that can be compared.


Sign in / Sign up

Export Citation Format

Share Document