Canonical Impulse-Momentum Equations for Impact Analysis of Multibody Systems

1992 ◽  
Vol 114 (1) ◽  
pp. 180-186 ◽  
Author(s):  
H. M. Lankarani ◽  
P. E. Nikravesh

For mechanical systems that undergo intermittent motion, the usual formulation of the equations of motion is not valid over the periods of discontinuity, and a procedure for balancing the momenta of these systems is often performed. A canonical form of the equations of motion is used here as the differential equations of motion. A set of momentum balance-impulse equations is derived in terms of a system total momenta by explicitly integrating the canonical equations. The method is stable when the canonical equations are numerically integrated and it is efficient when the derived momentum balance-impulse equations are solved. The method shows that the constraint violation phenomenon, which is usually caused by the numerical integration error, can be substantially reduced as compared to the numerical integration of the standard Newtonian form of equations of motion. Examples are provided to illustrate the validity of the method.

Author(s):  
H. M. Lankarani ◽  
P. E. Nikravesh

Abstract For mechanical systems that undergo intermittent motion, the usual formulation of the equations of motion is not valid over the periods of the discontinuity, and a procedure for balancing the momenta of the system is often performed. A canonical form of the equations of motion is used here as the differential equations of motion. A set of momentum balance-impulse equations are derived in terms of the system total momenta by explicitly integrating the canonical equations. The method shows to be stable while numerically integrating the canonical equations, and efficient while solving the momentum balance-impulse equations. Examples are provided to illustrate the validity of the method.


2021 ◽  
Author(s):  
Friedrich Pfeiffer

Abstract Constraints in multibody systems are usually treated by a Lagrange I - method resulting in equations of motion together with the constraint forces. Going from non-minimal coordinates to minimal ones opens the possibility to project the original equations directly to the minimal ones, thus eliminating the constraint forces. The necessary procedure is described, a general example of combined machine-process dynamics discussed and a specific example given. For a n-link robot tracking a path the equations of motion are projected onto this path resulting in quadratic form linear differential equations. They define the space of allowed motion, which is generated by a polygon-system.


Author(s):  
Bukoko C. Ikoki ◽  
Marc J. Richard ◽  
Mohamed Bouazara ◽  
Sélim Datoussaïd

The library of symbolic C++ routines is broadly used throughout the world. In this article, we consider its application in the symbolic treatment of rigid multibody systems through a new software KINDA (KINematic & Dynamic Analysis). Besides the attraction which represents the symbolic approach and the effectiveness of this algorithm, the capacities of algebraical manipulations of symbolic routines are exploited to produce concise and legible differential equations of motion for reduced size mechanisms. These equations also constitute a powerful tool for the validation of symbolic generation algorithms other than by comparing results provided by numerical methods. The appeal in the software KINDA resides in the capability to generate the differential equations of motion from the choice of the multibody formalism adopted by the analyst.


1972 ◽  
Vol 45 ◽  
pp. 90-94 ◽  
Author(s):  
N. A. Belyaev

A series of standard programmes has been developed for numerical integration by Cowell's method of the differential equations of motion of minor bodies. A variable step is used, and perturbations by eight major planets and nongravitational effects are taken into consideration. Further programmes have been constructed as part of a general attempt at ITA to produce numerical theories of cometary motion. They include the reduction of observations, the comparison of the observations with theory and the improvement of orbits. The programmes make it possible to calculate (O–C) residuals of up to 2000 observations simultaneously.


1997 ◽  
Vol 3 (3) ◽  
pp. 199-213 ◽  
Author(s):  
Stefano Pagano ◽  
Ernesto Rocca ◽  
Michele Russo ◽  
Riccardo Russo

The stability of a rigid rotor supported on radial tilting pad journal bearings is analysed. This study has been tackled both for small unbalance values by linearising the equations of motion, and also in the case where, because of the high unbalance value, the rotor axis describes orbits with an amplitude such that the system's non-linearity cannot be ignored. In both cases the system's stable operation maps have been obtained and verified through numerical integration of the differential equations of motion.


2016 ◽  
Vol 823 ◽  
pp. 49-54 ◽  
Author(s):  
Iuliu Negrean ◽  
Kalman Kacso ◽  
Claudiu Schonstein ◽  
Adina Duca ◽  
Florina Rusu ◽  
...  

Using the main author's researches on the energies of acceleration and higher order equations of motion, this paper is devoted to new formulations in analytical dynamics of mechanical multibody systems (MBS). Integral parts of these systems are the mechanical robot structures, serial, parallel or mobile on which an application will be presented in order to highlight the importance of the differential motion equations in dynamics behavior. When the components of multibody mechanical systems or in its entirety presents rapid movements or is in transitory motion, are developed higher order variations in respect to time of linear and angular accelerations. According to research of the main author, they are integrated into higher order energies and these in differential equations of motion in higher order, which will lead to variations in time of generalized forces which dominate these types of mechanical systems. The establishing of these differential equations of motion, it is based on a generalization of a principle of analytical differential mechanics, known as the D`Alembert – Lagrange Principle.


1999 ◽  
Vol 121 (3) ◽  
pp. 440-447 ◽  
Author(s):  
F. M. J. Pfister ◽  
S. K. Agrawal

This paper is concerned with the theory of differential equations of motion for a class of unrooted (i.e., without kinematical constraints to a Galilean frame) mechanisms called orthotropic multibody-systems and the application of this theory to the solution of three mechanisms: the Hoberman-sphere, the Wohlhart Octoid and the Fulleroid. Dedicated to O. Univ.-Prof. Dipl.-Ing. Dr. Techn. Karl Wohlhart on his 70th birthday


Author(s):  
Edward J. Haug

A method is presented for formulating and numerically integrating ordinary differential equations of motion for nonholonomically constrained multibody systems. Tangent space coordinates are defined in configuration and velocity spaces as independent generalized coordinates that serve as state variables in the formulation, yielding ordinary differential equations of motion. Orthogonal-dependent coordinates and velocities are used to enforce constraints at position, velocity, and acceleration levels. Criteria that assure accuracy of constraint satisfaction and well conditioning of the reduced mass matrix in the equations of motion are used as the basis for updating local coordinates on configuration and velocity constraint manifolds, transparent to the user and at minimal computational cost. The formulation is developed for multibody systems with nonlinear holonomic constraints and nonholonomic constraints that are linear in velocity coordinates and nonlinear in configuration coordinates. A computational algorithm for implementing the approach is presented and used in the solution of three examples: one planar and two spatial. Numerical results using a fifth-order Runge–Kutta–Fehlberg explicit integrator verify that accurate results are obtained, satisfying all the three forms of kinematic constraint, to within error tolerances that are embedded in the formulation.


Author(s):  
Olivier A. Bauchau ◽  
André Laulusa

A hallmark of multibody dynamics is that most formulations involve a number of constraints. Typically, when redundant generalized coordinates are used, equations of motion are simpler to derive but constraint equations are present. Approaches to dealing with high index differential algebraic equations, based on index reduction techniques, are reviewed and discussed. Constraint violation stabilization techniques that have been developed to control constraint drift are also reviewed. These techniques are used in conjunction with algorithms that do not exactly enforce the constraints. Control theory forms the basis for a number of these methods. Penalty based techniques have also been developed, but the augmented Lagrangian formulation presents a more solid theoretical foundation. In contrast to constraint violation stabilization techniques, constraint violation elimination techniques enforce exact satisfaction of the constraints, at least to machine accuracy. Finally, as the finite element method has gained popularity for the solution of multibody systems, new techniques for the enforcement of constraints have been developed in that framework. The goal of this paper is to review the features of these methods, assess their accuracy and efficiency, underline the relationship among the methods, and recommend approaches that seem to perform better than others.


Author(s):  
Shakil Ahmed ◽  
Hamid M. Lankarani ◽  
Manual F. O. S. Pereira

Abstract Analysis of impact problem in the presence of any tangential component of impact velocity requires a friction model capable of correct detection of the impact modes such as sliding, sticking, and reverse sliding. A survery of literature has shown that studies on the impact analysis of multibody systems have either been limited to the direct impact type with only a normal component of impact velocity (no frictional effect) or the ones that include friction have shown energy gains in the results due to the inherent problem in the use of Newton’s hypothesis. This paper presents a formulation for the analysis of impact problems with friction in constrained multibody mechanical systems. The formulation recognizes the correct mode of impact, i.e., sliding, sticking, and reverse sliding. The Poisson’s hypothesis is used for the definition of the coefficient of restitution, and thus the energy gains inherent with the use of Newton’s hypothesis are avoided. The formulation is developed by using a canonical form of the system equation of motion using joint coordinates and joint momenta. The use of canonical formulation is a natural way of balancing the momenta for impact problems. The joint coordinates reduces the equations of motion to a minimal set, and eliminate the complications arised from the kinematic constraint equations. The canonical form of equations are solved for the change in joint momenta using Routh’s graphical method. The velocity jumps are then calculated balancing the accumulated momenta of the system during the impact process. The impact cases are classified based on the pre-impact positions and velocities, and mass properties of the impacting systems. Analytical expressions for normal and tangential impulse are derived for each impact case. The classical problem of impact of a falling rod with the ground (a single object impact) is solved with the developed formulation, and the results are compared and verified by the solution from other studies. Another classical problem of a double pendulum striking the ground (a multibody impact) is also solved. The results obtained for the double pendulum problem confirms that the energy gain in impact analysis can be avoided by considering the correct mode of impact and using Poisson’s instead of Newton’s hypothesis.


Sign in / Sign up

Export Citation Format

Share Document