Implicit Numerical Integration of Constrained Equations of Motion Via Generalized Coordinate Partitioning

1992 ◽  
Vol 114 (2) ◽  
pp. 296-304 ◽  
Author(s):  
E. J. Haug ◽  
Jeng Yen

An implicit, stiffly stable numerical integration algorithm is developed and demonstrated for automated simulation of multibody dynamic systems. The concept of generalized coordinate partitioning is used to parameterize the constraint set with independent generalized coordinates. A stiffly stable, Backward Differentiation Formula (BDF) numerical integration algorithm is used to integrate independent generalized coordinates and velocities. Dependent generalized coordinates, velocities, and accelerations, as well as Lagrange multipliers that account for constraints, are explicitly retained in the formulation to satisfy all of the governing kinematic and dynamic equations. The algorithm is shown to be valid and accurate, both theoretically and through solution of an example.

Author(s):  
E. J. Haug ◽  
J. Yen

Abstract An implicit, stiffly stable numerical integration algorithm is developed and demonstrated for automated simulation of multibody dynamic systems. The concept of generalized coordinate partitioning is used to parameterize the constraint set with independent generalized coordinates. A stiffly stable, backward difference numerical integration algorithm is applied to determine independent generalized coordinates and velocities. Dependent generalized coordinates, velocities, and accelerations, as well as Lagrange multipliers that account for constraints, are explicitly retained in the formulation to satisfy all of the governing kinematic and dynamic equations. The algorithm is shown to be valid and accurate, both theoretically and through solution of a numerical example.


1984 ◽  
Vol 106 (2) ◽  
pp. 156-162 ◽  
Author(s):  
E. J. Haug ◽  
R. A. Wehage ◽  
N. K. Mani

A method for computer-aided design sensitivity analysis of large-scale constrained dynamic systems is presented. A generalized coordinate partitioning method is used for assembling and solving sets of mixed differential-algebraic equations of motion and adjoint equations required for calculation of derivatives of dynamic response measures with respect to design variables. The reduction in dimension of the equations of motion and associated adjoint equations obtained through use of generalized coordinate partitioning significantly reduces the computational burden, as compared to methods previously employed. Use of predictor-corrector numerical integration algorithms, rather than an implicit integration algorithm used in the past is shown to greatly simplify the equations that must be formulated and solved. Two examples are presented to illustrate accuracy of the design sensitivity analysis method developed.


1984 ◽  
Vol 106 (2) ◽  
pp. 172-178 ◽  
Author(s):  
A. A. Shabana ◽  
R. A. Wehage

An analytical method for transient dynamic simulation of large-scale inertia-variant spatial mechanical and structural systems is presented. Multibody systems consisting of interconnected rigid and flexible substructures which may undergo large angular rotations are analyzed. A finite element technique is used to characterize the elastic properties of deformable substructures. A component mode technique is then employed to eliminate insignificant substructure modes. Nonlinear holonomic constraint equations are used to define joints between different substructures. The system equations of motion are written in terms of a mixed set of modal and physical coordinates. A generalized coordinate partitioning technique is then employed to eliminate redundant differential equations. An implicit-explicit numerical integration algorithm solves the remaining set of differential equations and the approximate physical system state is recovered. The transient analysis of a spatial vehicle with flexible chassis is presented to demonstrate the method.


Author(s):  
L. T. Wang

Abstract A new method of formulating the generalized equations of motion for simple-closed (single loop) spatial linkages is presented in this paper. This method is based on the generalized principle of D’Alembert and the use of the transformation Jacobian matrices. The number of the differential equations of motion is minimized by performing the method of generalized coordinate partitioning in the joint space. Based on this formulation, a computational algorithm for computer simulation the dynamic motions of the linkage is developed, this algorithm is not only numerically stable but also fully exploits the efficient recursive computational schemes developed earlier for open kinematic chains. Two numerical examples are presented to demonstrate the stability and efficiency of the algorithm.


Author(s):  
Sung-Soo Kim ◽  
Jeffrey S. Freeman

Abstract This paper details a constant stepsize, multirate integration scheme which has been proposed for multibody dynamic analysis. An Adams-Bashforth Moulton integration algorithm has been implemented, using the Nordsieck form to store internal integrator information, for multirate integration. A multibody system has been decomposed into several subsystems, treating inertia coupling effects of subsystem equations of motion as the inertia forces. To each subsystem, different rate Nordsieck form of Adams integrator has been applied to solve subsystem equations of motion. Higher order derivative information from the integrator provides approximation of inertia force computation in the decomposed subsystem equations of motion. To show the effectiveness of the scheme, simulations of a vehicle multibody system that consists of high frequency suspension motion and low frequency chassis motion have been carried out with different tire excitation forces. Efficiency of the proposed scheme has been also investigated.


Author(s):  
Edward J. Haug ◽  
Mirela Iancu ◽  
Dan Negrut

Abstract An implicit numerical integration approach, based on generalized coordinate partitioning of the descriptor form of the differential-algebraic equations of motion of multibody dynamics, is presented. This approach is illustrated for simulation of stiff mechanical systems using the well known Newmark integration method from structural dynamics. Second order Newmark integration formulas are used to define independent generalized coordinates and their first time derivative as functions of independent accelerations. The latter are determined as the solution of discretized equations obtained using the descriptor form of the equations of motion. Dependent variables in the formulation, including Lagrange multipliers, are determined to satisfy all the kinematic and kinetic equations of multibody dynamics. The approach is illustrated by solving the constrained equations of motion for mechanical systems that exhibit stiff behavior. Results show that the approach is robust and has the capability to integrate differential-algebraic equations of motion for stiff multibody dynamic systems.


Author(s):  
Timothy A. Loduha ◽  
Bahram Ravani

Abstract In this paper we present a method for obtaining first-order decoupled equations of motion for multi-rigid body systems. The inherent flexibility in choosing generalized velocity components as a function of generalized coordinates is used to influence the structure of the resulting dynamical equations. Initially, we describe how a congruency transformation can be formed that represents the transformation between generalized velocity components and generalized coordinate derivatives. It is shown that the proper choice for the congruency transformation will insure generation of first-order decoupled equations of motion for holonomic systems. In the case of nonholonomic systems, or more complex dynamical systems, where the appropriate congruency transformation may be difficult to obtain, we present a constraint relaxation method based on the use of orthogonal complements. The results are illustrated using several examples. Finally, we discuss numerical implementation of congruency transformations to achieve first-order decoupled equations for simulation purposes.


Author(s):  
Kristopher Wehage ◽  
Bahram Ravani

This paper presents a computational method for formulating and solving the dynamical equations of motion for complex mechanisms and multibody systems. The equations of motion are formulated in a preconditioned form using kinematic substructuring with a heuristic application of Generalized Coordinate Partitioning (GCP). This results in an optimal split of dependent and independent variables during run time. It also allows reliable handling of end-of-stroke conditions and bifurcations in mechanisms, thereby facilitating dynamic simulation of paradoxical linkages such as Bricard’s mechanism that has been known to cause problems with some multibody dynamic codes. The new Preconditioned Equations of Motion are then solved using a recursive formulation of the Schur Complement Method combined with Sparse Matrix Techniques. In this fashion the Preconditioned Equations of Motion are recursively uncoupled and solved one kinematic substructure at a time. The results are demonstrated using examples.


1995 ◽  
Vol 62 (1) ◽  
pp. 216-222 ◽  
Author(s):  
T. A. Loduha ◽  
B. Ravani

In this paper we present a method for obtaining first-order decoupled equations of motion for multirigid body systems. The inherent flexibility in choosing generalized velocity components as a function of generalized coordinates is used to influence the structure of the resulting dynamical equations. Initially, we describe how a congruency transformation can be formed that represents the transformation between generalized velocity components and generalized coordinate derivatives. It is shown that the proper choice for the congruency transformation will insure generation of first-order decoupled equations of motion for holonomic systems. In the case of nonholonomic systems, or holonomic systems with unreduced configuration coordinates, we incorporate an orthogonal complement in conjunction with the congruency transformation. A pair of examples illustrate the results. Finally, we discuss numerical implementation of congruency transformations to achieve first-order decoupled equations for simulation purposes.


Sign in / Sign up

Export Citation Format

Share Document