Higher Order Wave Loading on Fixed, Slender, Surface-Piercing, Rigid Cylinders

1991 ◽  
Vol 113 (1) ◽  
pp. 23-29
Author(s):  
K. Thiagarajan ◽  
R. E. Baddour

The use of Morison’s equation together with the linear wave theory is considered a first approximation to evaluate the inline wave forces on a surface-piercing cylinder. Significant second-order forces are expected to arise from the waterline and dynamic pressure effects, even when a wave is described by the linear theory. Experiments have been carried out at the MUN (Memorial University of Newfoundland) wave tank facility to identify these second-order forces for various wave frequencies and for various cylinder diameters. A strain gage force transducer has been used for this purpose. First and second-order force components have been identified using a Fast Fourier Transform. Theoretical evaluation of wave forces involved computing components from Morison’s equation using second-order Stokes theory. The waterline forces and convective acceleration forces which contribute toward the total second-order force have also been evaluated. First-order results are in acceptance with previously established data. Theoretical considerations for second order are satisfactory. Scatter in second-order experimental results were observed. Different approaches to the second-order inertia force are compared. It is expected that the inclusion of second-order forces will lead to a better representation of wave loading on offshore structures.

1978 ◽  
Vol 100 (1) ◽  
pp. 100-104 ◽  
Author(s):  
G. Moe ◽  
S. H. Crandall

A statistical estimate of the extreme wave force per unit length acting on a section of a fixed cylindrical pile in a random sea-state is derived. The random motion of the sea is described by a spectrum of wave heights in conjunction with linear wave theory. The wave force is assumed to depend linearly on the water particle acceleration and non-linearly on the water velocity according to the Morison formula. The interaction of the velocity and acceleration contributions and the contribution of a small steady current are accounted for by an asymptotic approximation valid for large forces. The expected rate of occurrences of extremes based on a simple peak definition agrees satisfactorily with a more elaborate result based on a true maximum definition. The formulas derived here provide a basis for a design-force procedure which could provide an improvement over the design-wave procedure commonly used for the analysis of offshore structures.


2005 ◽  
Vol 128 (3) ◽  
pp. 177-183 ◽  
Author(s):  
Sébastien Fouques ◽  
Harald E. Krogstad ◽  
Dag Myrhaug

Synthetic aperture radar (SAR) imaging of ocean waves involves both the geometry and the kinematics of the sea surface. However, the traditional linear wave theory fails to describe steep waves, which are likely to bring about specular reflection of the radar beam, and it may overestimate the surface fluid velocity that causes the so-called velocity bunching effect. Recently, the interest for a Lagrangian description of ocean gravity waves has increased. Such an approach considers the motion of individual labeled fluid particles and the free surface elevation is derived from the surface particles positions. The first order regular solution to the Lagrangian equations of motion for an inviscid and incompressible fluid is the so-called Gerstner wave. It shows realistic features such as sharper crests and broader troughs as the wave steepness increases. This paper proposes a second order irregular solution to these equations. The general features of the first and second order waves are described, and some statistical properties of various surface parameters such as the orbital velocity, slope, and mean curvature are studied.


1986 ◽  
Vol 173 ◽  
pp. 667-681 ◽  
Author(s):  
James Lighthill

This article is aimed at relating a certain substantial body of established material concerning wave loading on offshore structures to fundamental principles of mechanics of solids and of fluids and to important results by G. I. Taylor (1928a,b). The object is to make some key parts within a rather specialised field accessible to the general fluid-mechanics reader.The article is concerned primarily to develop the ideas which validate a separation of hydrodynamic loadings into vortex-flow forces and potential-flow forces; and to clarify, as Taylor (1928b) first did, the major role played by components of the potential-flow forces which are of the second order in the amplitude of ambient velocity fluctuations. Recent methods for calculating these forces have proved increasingly important for modes of motion of structures (such as tension-leg platforms) of very low natural frequency.


2018 ◽  
Vol 203 ◽  
pp. 01021
Author(s):  
Nurul 'Azizah Mukhlas ◽  
Noor Irza Mohd Zaki ◽  
Mohd Khairi Abu Husain ◽  
Gholamhossein Najafian

For offshore structural design, the load due to wind-generated random waves is usually the most important source of loading. While these structures can be designed by exposing them to extreme regular waves (100-year design wave), it is much more satisfactory to use a probabilistic approach to account for the inherent randomness of the wave loading. This method allows the statistical properties of the loads and structural responses to be determined, which is essential for the risk-based assessment of these structures. It has been recognized that the simplest wave generation is by using linear random wave theory. However, there is some limitation on its application as some of the nonlinearities cannot be explained when higher order terms are excluded and lead to underestimating of 100-year wave height. In this paper, the contribution of nonlinearities based on the second order wave theory was considered and being tested at a variety of sea state condition from low, moderate to high. Hence, it was proven that the contribution of nonlinearities gives significant impact the prediction of 100-year wave's design as it provides a higher prediction compared to linear wave theory.


Author(s):  
Hans Bihs ◽  
Muk Chen Ong

Two-dimensional (2D) numerical simulations are performed to investigate the flows past partially-submerged circular cylinders in free surface waves. The 2D simulations are carried out by solving the Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with the k-ω turbulence model. The level set method is employed to model the free-surface waves. Validation studies of a numerical wave tank have been performed by comparing the numerical results with the analytical results obtained from the linear-wave theory. Wave forces on the partially-submerged cylinders have been calculated numerically and compared with the published theoretical and experimental data under regular-wave conditions. The free-surface elevations around the cylinders have been investigated and discussed.


Author(s):  
Weiguang Bao ◽  
Fenfang Zhao ◽  
Takeshi Kinoshita

To evaluate wave forces and to estimate the motion of breakwater, a circular cylinder is investigated based on the linear wave theory in the present work. The cylinder possesses a porous sidewall, an impermeable bottom and a horizontal porous plate inside that is fixed in the cylinder to work as obstruct and make wave dissipation more effectively. To simplify the problem, the Darcy’s fine-pore model is applied to the boundary condition on the porous body surface. The boundary value problem is solved by means of the eigen-function expansion approach. The fluid domain is divided into three regions and different eigen-function series are used. The so-called dispersion relation for the region inside the cylinder is quite different from a conventional one due to the existence of the porous plate. It leads to eigen values of complex number. To obtain solutions for the radiation problems, particular solution should be constructed to take account of the normal velocity appearing on the porous boundary. The wave loads are evaluated by integrating the pressure difference on two sides of the wetted body surface. The theoretical works are in good consistence with the experimental results. The Haskind relations are examined for the porous body. It is found that the damping coefficient consists of two parts. In addition to the component of conventional wave-radiating damping, exists a second component caused by the porous effects.


1982 ◽  
Vol 1 (18) ◽  
pp. 108
Author(s):  
Bernard LeMehaute ◽  
James Walker ◽  
John Headland ◽  
John Wang

A method of calculating nonlinear wave induced forces and moments on piles of variable diameter is presented. The method is based on the Morrison equation and the linear wave theory with correction parameters to account for convective inertial effects in the wave field. These corrections are based on the stream function wave theory by Dean (1974). The method permits one to take into account the added wave force due to marine growth in the intertidal zone or due to a protective jacket, and can also be used to calculate forces on braces and an array of piles.


Author(s):  
Se´bastien Fouques ◽  
Harald E. Krogstad ◽  
Dag Myrhaug

Synthetic Aperture Radar (SAR) imaging of ocean waves involves both the geometry and the kinematics of the sea surface. However, the traditional linear wave theory fails to describe steep waves, which are likely to bring about specular reflection of the radar beam, and it may overestimate the surface fluid velocity that causes the so-called velocity bunching effect. Recently, the interest for a Lagrangian description of ocean gravity waves has increased. Such an approach considers the motion of individual labeled fluid particles and the free surface elevation is derived from the surface particles positions. The first order regular solution to the Lagrangian equations of motion for an inviscid and incompressible fluid is the so-called Gerstner wave. It shows realistic features such as sharper crests and broader troughs as the wave steepness increases. This paper proposes a second order irregular solution to these equations. The general features of the first and second order waves are described, and some statistical properties of various surface parameters such as the orbital velocity, the slope and the mean curvature are studied.


Author(s):  
Mark L. McAllister ◽  
Thomas A. A. Adcock ◽  
Paul H. Taylor ◽  
Ton S. van den Bremer

High wind speeds generated during hurricanes result in the formation of extreme waves. Extreme waves by nature are steep meaning that linear wave theory alone is insufficient in understanding and predicting their occurrence. The complex, highly transient nature of the direction of wind and hence of waves generated during hurricanes affects this nonlinear behavior. Herein, we examine how this directionality can affect the second-order nonlinearity of extreme waves generated during hurricanes. This is achieved through both deterministic calculations and experiments based on the observations of Young (2006, “Directional Spectra of Hurricane Wind Waves,” J. Geophys. Res. Oceans, 111(C8), epub). Our calculations show that interactions between the tail and peak of the spectrum can become significant when they travel in different directions, resulting in second-order difference components that exist in the linear range of frequencies. These calculations are generally supported by experimental observations, but we note the difficulty of generating and focusing the high-frequency tail of the spectrum experimentally. Bound second-order difference components or subharmonics typically exist as low frequency infra-gravity waves. Components that exist in the linear range of frequencies may be missed by conventional methods of processing field data where low-pass filtering is used and hence overlooked. In this note, we show that in idealized directional spreading conditions representative of a hurricane, failing to account for second-order difference components may lead to underestimation of extreme wave height.


1979 ◽  
Vol 23 (01) ◽  
pp. 32-42 ◽  
Author(s):  
Robert A. Naftzger ◽  
Subrata K. Chakrabarti

The wave forces on a fixed two-dimensional object submerged in water of finite depth are obtained under the assumptions of linear wave theory. The far-field characteristics of the wave interaction with the object are also examined. The boundary-value problem for the wave potential is formulated in terms of Green's theorem, and the resulting integral equation is solved numerically. Results for a submerged and half-submerged circular cylinder and a bottom-seated half cylinder are presented. In the limiting case of infinite depth the numerical results compare quite well with known solutions.


Sign in / Sign up

Export Citation Format

Share Document