Micro-EHL in Lubricated Concentrated Contacts

1990 ◽  
Vol 112 (2) ◽  
pp. 392-397 ◽  
Author(s):  
D. J. Schipper ◽  
P. H. Vroegop ◽  
A. W. J. de Gee ◽  
R. Bosma

In sliding friction experiments, performed with lubricated concentrated contacts macroscopically operating in the lubricants’ liquid-state regime, the existence of micro-EHL has been shown. With the measuring method used, the lubricants’ limiting shear stress τ1 or the ratio of the limiting shear stress with pressure, τ1/p, can easily be obtained.

Author(s):  
A Baker ◽  
RS Dwyer-Joyce ◽  
C Briggs ◽  
M Brockfeld

The conventional way to husk rice is to pass it between two rubber rollers that are rotating with a surface speed differential. The resulting normal pressure and shear stress causes the husk to be peeled away from the kernel. The process is suited to high-rice flow rates, but is energy intensive and can result in considerable wear to the surfaces of the rollers. The operating parameters for machines of this design are usually determined and set empirically. In this article, some experiments and calculations had been carried out in order to explore the mechanisms involved in husking rice grains using this method. A simple sliding friction rig with load cell and high-speed camera was used to observe the mechanisms that occur during husking. The husking performance of different rubbers was compared for changes in the applied normal load. It was found that grains rotate between the rubber counterfaces on initial motion before being husked. In addition, harder rubbers were found to husk a higher proportion of entrained grains at lower applied normal load. By measuring the coefficient of friction between rice and rubber samples, the shear force required to husk a given percentage of grains could be calculated and was shown to be constant regardless of rubber type. Based on the mechanism seen in the high-speed video, it was evident that there was a limiting shear stress that was the governing factor over the husked ratio.


1994 ◽  
Vol 116 (3) ◽  
pp. 612-620 ◽  
Author(s):  
Victoria Wikstro¨m ◽  
Erik Ho¨glund

When calculating film thickness and friction in elastohydrodynamically lubricated contacts, assuming a non-Newtonian fluid, the lubricant limiting shear stress is an essential parameter. It influences minimum film thickness and determines traction in the contact. The limiting shear stress is pressure dependent according to the Johnson and Tevaarwerk equation: τL=τ0+γp The limiting shear stress-pressure coefficient γ has in a previous screening investigation been shown to depend on several parameters: oil type, oil viscosity at + 40°C, maximum contact pressure and temperature. In the present investigation, the preliminary data is used together with response surface methodology. With these results in mind, further experiments are made and an empirical model is built. This paper presents a new model for γ which is valid for two types of oil (a polyalphaolefine with diester and a naphthenic oil) with different viscosities at +40°C. The model incorporates the influence of maximum contact pressure and oil temperature on γ. The measurements on which the model is based were carried out at temperatures ranging from −20 to + 110°C. The pressure range was 5.8–7 GPa and the shear rate was about 106 s−1.


1979 ◽  
Vol 23 (89) ◽  
pp. 420-421 ◽  
Author(s):  
W. F. Budd ◽  
B. J. McInnes ◽  
I. Smith

Abstract It is difficult to deduce sliding properties from the numerical modelling of ordinary glaciers because the flow law of ice is still not known well enough to clearly differentiate sliding from internal deformation of the ice. For glaciers undergoing high-speed surges it appears that the majority of the total speed is due to sliding. Furthermore the average basal shear stress of the ice mass is lowered during the surge. This suggests that surging glaciers can be modelled by incorporating a sliding friction law which has the effective friction coefficient decreasing for high velocities. A relation of this type has been found for ice sliding on granite at −0.5°C by Barnes and others (1971) and has also been obtained for rough slabs with ice at the pressure-melting point by Budd and others (1979). A simple two-dimensional model was developed by Budd and McInnes (1974) and Budd (1975), which was found to exhibit the typical periodic surge-like characteristics of real ice masses. Since the sliding-stress relation for the low velocities and stresses was not known, and was not so important for the surges, it was decided to use the condition of gross equilibrium (i.e. that the ice mass as a whole does not accelerate) together with a single-parameter relation for the way in which the friction decreases with stress and velocity to prescribe the basal shear-stress distribution. The low-stress-velocity relation can thus be obtained as a result. This two-dimensional model has now been parameterized to take account of the three-dimensional aspects of real ice masses. A number of ice masses have since been closely matched by the model including three well-known surging ice masses: Lednik Medvezhiy, Variegated Glacier, and Bruarjökull. Since the flow properties of ice are so poorly known—especially for longitudinal stress and strain-rates—the model has been run with two unknown parameters: one a flow-law parameter (η) and the other a sliding parameter (ø). The model is run over a wide range of these two parameters to see if a good match can be made to the real ice masses and if so what the values of the parameters η and ø are for best fit. The matching of the three above ice masses gave very similar values for each of the two parameters η and ø, the value of η being within the range of values expected for the flow properties of temperate ice as determined by laboratory experiments. Using the same values of η and ø it is found that the ordinary glaciers modelled so far do not develop surging but that they could do if the value of ø were increased or if the mass-balance input were sufficiently increased. For Lednik Medvezhiy a detailed analysis of the friction coefficient with velocity was carried out and it was found that the values required for best fit showed a very close agreement to the sliding friction curve of Barnes and others (1971) at −0.5°C. It is concluded that this type of sliding relation can account for the major features of glacier surge phenomena. Finally it is apparent that the numerical modelling technique can be used very effectively to test any large-scale bulk sliding relation by the analysis of real surges of ice masses and in addition can provide further insight into the sliding relation in association with other stresses in the ice mass.


2003 ◽  
Vol 125 (4) ◽  
pp. 739-746 ◽  
Author(s):  
B. Jacod ◽  
C. H. Venner ◽  
P. M. Lugt

A previous study of the behavior of friction in EHL contacts for the case of Eyring lubricant behavior resulted in a friction mastercurve. In this paper the same approach is applied to the case of limiting shear stress behavior. By means of numerical simulations the friction coefficient has been computed for a wide range of operating conditions and contact geometries. It is shown that the same two parameters that were found in the Eyring study, a characteristic shear stress, and a reduced coefficient of friction, also govern the behavior of the friction for the case of limiting shear stress models. When the calculated traction data is plotted as a function of these two parameters all results for different cases lie close to a single curve. Experimentally measured traction data is used to validate the observed behavior. Finally, the equations of the mastercurves for both types of rheological model are compared resulting in a relation between the Eyring stress τ0 and the limiting shear stress τL.


Author(s):  
Kohshiro Kato ◽  
Toshiaki Iwasaki ◽  
Masana Kato ◽  
Katsumi Inoue

Author(s):  
A. V. Olver ◽  
H. A. Spikes

The prediction of traction (friction) in lubricated rolling-sliding contacts remains a challenging problem despite the development of the realistic Maxwell-Eyring-limiting shear stress model by Johnson and co-workers in the 1980s. This is largely because there is a strong coupling between the elastohydrodynamic traction and the film temperature. An added complication is that the heat conducted into the rubbing surfaces, as well as influencing traction directly, also determines the temperature in the inlet to the contact and hence the thickness of the elastohydrodynamic film. In the present paper, the traction model of Johnson et al. is combined with a heat transfer analysis of the contacting bodies as well as the film thickness regression equation. In addition, the variations in the lubricant's rheological properties with temperature and pressure based upon the measurements of Muraki et al. have been included. The traction equation is expressed in dimensionless form and is solved using a simple iterative scheme, which in many cases allows estimation of the traction without the use of a computer. Closed-form equations for the friction are given for each of the traction regimes.


Sign in / Sign up

Export Citation Format

Share Document